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ABSTRACT 

The purpose of this note is to provide a survey of the theory of fraction 
representation and robust stabilization of nonlinear systems developed by the author 
over the last few years. The note contains an exposition of the main results obtained 
so far and some examples, but no proofs are included. The results are all explicit and 
implementable. 



INTRODUCTION 

Over the last few years, the author has been engaged in the development of a 
theory of stabilization for nonlinear systems (HAMMER [1984a,b, 1985a,b, 1986, 
1987a,b, and 1988]). The basic mathematical notion on which this theory rests is the 
notion of fraction representations of nonlinear systems. Generally speaking, a fraction 
repr&sentation of a nonlinear system is a factorization of the system into a 
composition of two nonlinear systems, one of which is stable and the other is the 
inverse of a stable system. More specifically, one distinguishes between two kinds of 
fraction representations - a right fraction representation and a left fraction 
representation. A right fraction representation of a nonlinear system I is a 
representation of the form I= PQ-1, where P and Q are stable systems, with Q 

being invertible (i.e., a set isomorphism). A left fraction representation of the system 
i: is of the form i: = G-lt, where G and T are stable systems, with G being 
invertible. As it turns out, and as we manifest throughout the present note, fraction 
representations play a fundamental role in the theory of stabilization for nonlinear 
systems, and their construction is instrumental for the computation of compensators 
that stabilize a given system. 

The general appearance of the stabilization theory we develop resembles very 
closely the transfer matrix theory of linear systems. The mathematical techniques 
we use for the nonlinear case are, of course, of a totally different nature, and no 
transforms are involved. In our presentation, we limit ourselves to the use of 
common mathematical techniques, and the general mathematical background we use 
can be found in any basic book on topology (e.g., KURATOWSKI [1961]). We shall 
discuss the robust stabilization of discrete-time nonlinear recursive systems, and the 
results we obtain are all explicit and can he directly implemented on digital 
computers . The purpose of this note is to provide a brief survey of the status of our 
thgory at the present time. For proofs and detailed technical discussions of the results 
we survey here, see the appropriate full text papers. 

We mention briefly the literature background. As we said, the results surveyed 
in this note are taken from HAMMER [1984a,b, 1985a,b, 1986, 1987a,b, and 1988]. 
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Alternative recent studies on the stabilization of nonlinear systems can be found in 
VIDY ASAGAR [1980], SONTAG [1981], DESOER and LIN [1984]. ISIDORI [1985]. the 
references cited in these papers, and others. Studies on the effect of feedback on 
system uncertainties appeared in BLACK [1934], BODE [1945], NEWTON, GOULD, and 
KAISER [1957], ZAMES [1966 and 1981]. ROSENBROCK [1970 and 1974], DESOER and 
VIDY ASAGAR [1975], KIMURA [1984], the references cited in these papers, and 
others. 

2. MOTIVATION AND GENERALITIES 

The basic control configuration that we use in our study of the stabilization of 
nonlinear systems is the following classical one. 

( 2.1) 

u + 1t . i: . . I - . . . a b -
c, 

f . . 

tcn,f) 

Here, l is the given system which needs to be stabilized, 1t 1s a dynamic 
precompensator, If> is a dynamic feedback compensator, and I(1t,1P) denotes the closed 
loop system. We have repeatedly concluded in our studies of the nonlinear 
stabilization problem that it is of particular advantage to choose the precompensator 
1t and the feedback compensator , in the form 
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ff: a-1 I 

(2.2) 

4P =A' 

where A and B are stable systems with B being invertible, and where A and 
a-1 are causal. The advantage of using this particular form of the compensators is 
twofold. First, this form of the compensators leads to particularly simple and 
transparent conditions for input/output stabilization, as we show in a moment. 
Second, the conditions for internal stability become substantially simplified when this 
form of compensators is used, to the point where internal stability is almost implied 
by input/output stability, and an explicit derivation of compensators that internally 
stabilize the system becomes possible. The way these advantages come about will 
become clear from our ensuing discussion. It is not less important to note that the 
price that we pay for restricting ourselves to compensators of the form (2.2) is rather 
low. With this choice of compensators we can achieve virtually arbitrary dynamics 
assignment for the internally stable closed loop (HAMMER [1987b]), and we can 
design the closed loop to be robustly stable (HAMMER [1988]). Thus, this configuration 
allows us to do more or less everything we would like to do from a stabilization point 
of view, with a minimal amount of complication. 

Throughout our discussion, we make the basic assumption that the amplitudes of 
the input sequences to any of the systems we consider are bounded by a fixed hound, 
namely, that there is a real number <x. > 0 such that all the input sequences to our 
systems are of amplitude not exceeding <x.. In most practical situations, this does not 
really amount to an assumption, hut rather to a description of the actual physical 
reality. The input sequences, being generated by a physical device, are naturally of 
bounded amplitudes, the bound being determined, for instance, by saturation 
phenomena. 

Let us now turn to a preliminary analysis of the control cofiguration (2.1). 
Assume that the system I has a right fraction representation I = PQ-1, and that 
the compensators 1t and "P are given by (2.2). Then, it can be readily seen (e.g., 
HAMMER [1984a]) that, under some standard mild assumptions, the input/output 
relationship induced by the closed loop system L(1t,t,p) is given by 
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Denoting 

(2.4) M := AP + BQ, 

we obtain that 

in close analogy to the linear situation. Clearly, if the stable systems A and B are 
selected so that the stable system M also has a stable inverse M-1, then the 
closed-loop system i'.(n,t) becomes input/output stable . In fact, as we discuss later, 
~( 'Tt,~) will he internally stable under these circumstances whenever the systems A 
and B satisfy some additional mild requirements (HAMMER [1986b and 1987b]). A 
stable system M which is invertible and whose inverse M-1 is also stable is called 
a unimodular system. For the existence of stable systems A, B satisfying the 
equation AP + BO = M with M unimod ular, we need P and Q to be right 
comprime, as we elaborate in a later section. 

It is rather obvious from our discussion so far that the problem of finding stable 
systems A and B which satisfy the equation AP+ BQ = M, where P, Q, and M 
are given, is of central importance to our discussion. In order to be able to choose the 
compensators n and cp most convenient for implementation, we would in fact like to 
know .all pairs of stable systems A, B satisfying that equation. It is comforting to 
know that in order to obtain all such pairs of stable systems, all we need is one pair, 
and, given one pair, all other pairs can be obtained in a straightforward way from 
transparent parametrization equations. For this purpose we need left fraction 
representations of nonlinear systems . 

Let ! = G-1T, where G and T are stable systems, be a left fraction 
representation of the given system !. Recalling the right fraction representation L = 

Pa-1 from before, we obtain G-lr = PQ-1, or 
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TQ = GP. 

Now, assume we have one pair of stable systems A, B satisfying AP + BQ = M. To 
obtain other pairs of such systems, we can proceed simply as follows. Choose an 
arbitrary stable system h, and define the stable systems 

A':= A - hG, 
(2.6) 

B' := B + hT. 

Then, using the fact that GP= TQ, we obtain 

A'P + B'Q = AP - hGP + BQ + hTQ = AP + BO= M, 

and A', B' satisfy our equation. Thus, for every choice of h we obtain a new pair of 
solutions, and we see that left fraction representations allow us to parametrize 
solutions of our basic equation in a rather transparent way. In fact, for the systems 
we consider in this note, (2.6) provides all pairs of solutions A', B' of the equation 
A'P + B'Q = M, when one such pair A, B is known. We conclude that left fraction 
representations also are of crucial importance to the theory of stabilization of 
nonlinear systems. 

Returning now to equation (2.5), we see that the unimodular transformation M 
controls the dynamical properties of the closed loop system I( 1t,t)· By choosing M 
appropriatly, we can achieve dynamics assignment for our systems. Of course, 
detailed attention has to be given to the problem of internal stability of the closed loop, 
and we shall describe in a later section how internal stability of the configuration can 
be guarantied. 

The final topic we would like to review in this note is the question of robust 
stabilization of nonlinear systems. Suppose the accurate description of the system l 
that needs to be stabilized is not known, and that only a nominal description of I is 
given. We denote the nominal description of the system that has to be stabilized by 
In, and we allow the actual system I to deviate from its nominal description. The 
central question in the theory of robust stabilization is the following. Is it possible to 
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use the nominal description In to design the control configuration (2.1) in such a way 
that it will preserve its stability when the actual system I is inserted in it. instead 
of the nominal system In for which it was designed. We will describe in a later 
section a solution to the robust stabilization problem obtained in HAMMER [1988]. The 
underlying ideas on which this solution is based can be qualitatively (and quite 
inaccurately) described as follows. Let I = PQ-1 be a fraction representation of the 
given system. Suppose we have one approppriate pair of systems A and B for 
which M := AP + BQ is unimodular. The systems P and Q, which arise from a 
right fraction representation of the system I, depend, of course, on I. Consequently, 
deviations of I from its nominal value In will cause deviations of P and of Q 
from their nominal values. Let In= Pn~1 be a fraction representation of the 
nominal system. Let I be the actual system with the deviation, and suppose we can 
construct for 1t a fraction representation I = PQ-1 in which the numerator P 
sat17fies P = Pn, where Pn is the numerator of the fraction representation of the 
nominal system In. Namely, assume that the effect of the deviation can be 
completely described by a deviation of the denominator system Q from its nominal 
value On· Denote w := Q - On, and notice that w is a stable system. and that Q = 
On + w. Suppose further that, for every real number E > 0, there is a causal and 
stable system A£ satisfying the equation A£Pn + EOn = M. Notice that when the 
latter holds and (2.2) is used, the system I can be stabilized using B = El (and A = 
AE), in which case the precompensator 1t = (1/£ )I is a simple amplifier. By taking € 

arbitrarily small, we can arbitrarily increase the gain of this amplifier, and thus 
arbitrarily increase the forward path gain. Finally, suppose there is a real number 
6 > 0 such that the system M' := M + m stays unimodular for every stable system 
m with 'magnitude' not exceeding 6, so that a deviation of I less than 6' does not 
destroy the unimodularity of M. The existence of 6 as well as its value depend, of 
course, on the nature of the particular unimodular system M. 

Now, assume that the nominal system In is stabilized using the compensators 
induced by A = AE and B = El. via (2.2). Then, when the system L is inserted in the 
loop instead of the nominal system In for which the loop was designed, we obtain, 
recalling the fraction representation I = PQ-1, that 
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Whence, if we choose E small enough so that the 'magnitude' of 1n := EW ts smaller 
than 6, the system M' will still be unimodular, and the input/output relationship 
I(1t,cp) = PM'-1 induced by the closed loop will remain stable, despib~ the deviation in 
the system I. Thus, the deviation will not destroy stability. Basically, our discussion 
in this paragraph is but a restatement of the qualitative principle that, in a closed 
feedback loop, high gain in the forward path can counteract deviations in the 
parameters of the forward pa th systems, a principle which has been widely accepted 
on an intuitive level ever since the classical work of BLACK [1934] on linear feedback 
systems. The main advantage of the particular form in which we formulate this 
principle here is that, in this formulation, the principle can be readily applied to 
nonlinear situations, and incorporated within the requirements of the theory of 
in tern al stability. 

The qualitative ideas that we presented in this section form the crude material 
for the theory of fraction representations and robust stabilization that we survey in 
the remaining parts of this note. As we shall see, the theory is rather general in its 
scope, and the results it provides are explicit and implementable. 

3. THE BASIC FRAMEWORK AND FRACTION REPRESENTATIONS 

The systems we consider are discn~te-time systems, accepting sequences of 
m-dimensional real vectors as their input, and generating sequences of 
p-dimensional real vectors as their output. To introduce our notation, we let R be 
the set of real numbers, and, for an integer m > 0, we let Rm be the set of all 
m-dimensional real vectors. By R0 we simply mean the zero element 0. We denote 
by S(Rm) the set of all sequences of the form u 0 ,u1,u2, ... , with each element ui 
belonging to Rm. Given a sequence u € S(Rm) and an integer i 0, we denote by ui 
the i-th element of the sequence, and we interpret the integer i as the time marker. 
For two integers i > j 0, we denote by uJ the set of elements uj, uj+1' ... ,u1. In the 
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set S(Rm) we induce the usual operation of addition elementwise, so that, given a 
pair of sequences u, v € 'S(Rm), the sum w := u + v is again a sequence in S(Rm), 
with each one of its elements being given by wi := u1 + vi, i = 0, 1,2, .... 

Adopting the input/output point of view, we conceive a system as a device that 
transforms input sequences into output sequences. In accurate terms, a system I is 
simply a map r: S(Rm) ... S(RP), transforming input sequences from S(Rm) into 
output sequences from S(RP), where m and p are arbitrary positive integers. In 
order to be able to obtain results which are simple, explicit, computable, and 
implementable, we shall not discuss here systems on this level of generality. Instead, 
we shall restrict ourselves to recursive systems which have their state as output, 
namely, to systems I possessing a recursive representation of the form 

where f : RP x Rm .... RP is a function, which we shall usually assume to be 
continuous. Here, the input sequence of the system is {uk} and its output sequence is 
{xk), and we assume that the initial condition x0 is specified. The function f is 
called a recursion function of the system I. Given a subspace S C S(Rm ), we denote 
by ![S) the image of the set S through I, namely, the set of all output sequences 
that I generates from input sequences belonging to S. Also, given a subspace S' C 
S(RP), we denote by !*[S'] the inverse image of the set S' thr~ugh i:, namely, the 
set of all input sequences that generate output sequences belonging to the set S'. 

We review now briefly some notions related to causality of systems. A system I 
: S(Rm) .... S(RP) is causal (respectively, strictly causal) if the following holds for 
every pair of input sequences u, v E S(Rm): for all integers i 0 for which u6 = 
vJ, one also has Iu]l = Iv]~ (respectively, !u]~ + 1 = !v]J + 1 ). A system M : S(Rm) .... 
S(Rm) is a bicausal system 1f it is invertible, and if M and M-1 are both causal 
systems. 

Most of our discussion is related, of course, to the stability of systems. The notion 
of stability that we adopt is in the spirit of the Lyapunov notion of stability, and thus 
is related to the continuity of the system as a map. For the purpose of introducing the 
notion of stability, we need to induce some norms on the space of sequences S(Rm). 
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First, let w = (w1, ... , wm) be a vector in Rm. We denote lwl := max {lwil, i = 1, 
... ,m}, the maximal absolute value of the coordinates of w. Next, we define a norm on 
the space S(Rm) given, for any element u E S(Rm), by p(u) := sup {2-ilu 11, 1 = 0,1,2, 
... }, and we note that this is simply a weighted 100 -norm. We use this norm to define 
a metric p(u,v) on S(Rm), by letting p(u,v) := p(u-v) for every pair of elements u, 
v t S(Rm ). Whenever referring to continuity, we shall always mean continuity with 
respect to the topology induced by the metric p, unless explicitly stated otherwise. It 
will also be convenient for us to use the notation lul := sup {lu11. 1 = 0,1,2, . ..} for an 
element u E S(Rm). Then, for a real number e > 0, we denote by seem) the set of all 
elements u E S(Rm) satisfying lul s e, namely, the set of all sequences bounded by e. 
A system ! : S(Rm)-+ S(RP) is lllBQ (Bounded-Input Bounded-Output)-stable if, for 
every real number e > 0, there is a real number N > 0 such that ![S(elll)] C S(NP). 
Finally, we say that a system I: S(Rm)-+ S(RP) is stable if it is BIBO-stable, and if, 

for every real number e > 0, the restriction r: S(em) _. S(RP) is a continuous map. 

Before turning to a review of our theory of fraction representations for nonlinear 
systems, we wish to discuss two basic assumptions that we make in the development 
of our framework. The first assumption is that all the systems we consider are 
operated by bounded input sequences, namely, that there is a fixed real number oc. > 0 
such that all our systems have S(ocm) as their domain. As we have remarked 
already in an earlier section, this is hardly a restrictive assumption from the 
practical point of view. In practice, input sequences are generated by a physical 
device, and their maximal amplitude is limited by the physical characteristics of that 
device. The second assumption we make is that the system I that needs to be 
stabilized is an injective (one to one) map. At first glance, this looks like a restrictive 
assumption, since many systems of practical interest are, of course, not injective 
systems. However, further reflection shows that the assumption that the system that 
needs to be stabilized is an injective system is not really restrictive, for the following 
reason. Assume that the system I that needs to be stabilized is a strictly causal 
system . This is always true for systems having recursive representations of the form 
(3.1). Then, instead of stabilizing the system I directly, consider the stabilization of 
the system I+ I, the sum of I and the identity system I, ignoring for a second the 
fact that this sum might not be well defined due to different input space and output 
space dimensionalities. Then, the strict causality of r implies that I +r is bicausal, 
and hence injective. Moreover, if we stabilize the system I+ r, we shall also obtain 



stabilization of the original system I (in a somewhat different control 
configuration), as we now show. 

1 1 

Let ! : S(Rm) -+ S(Rq) be a strictly causal system. Let p := max {m, q}, and 
define the identity injection maps J 1 : S(Rm) -+ S(RP) and J2 : S(Rq) -+ S(RP) as 
follows. If q m. write S(RP) = S(Rq) = S(Rm) x S(Rq-m), let J1 : S(Rm) .... S(RP): 
J1[S(Rm)J = S(Rm) x O be the obvious identity injection, and let J2: S(Rq) .... S(RP) 
( =S(Rq) ) be the identity map. If q < m, write S(RP) = S(Rm) = S(Rq) x S(Rm-q), let 
J2 : S(Rq) .... S(RP) : J2[S(Rq)J = S(Rq) x O be the obvious identity injection, and let J 1 
: S(Rm) .... S(RP) ( =S(Rm)) be the identity map. Then, as we show in a minute, the 
system 

where r is a pxp constant nonsingular matrix, is injective by the strict causality of 
the system i:. The implementation of the injections J1 and J2 is very simple - it 
just amounts to increasing the dimension of some vectors through augmentation by 
entries of zeros (see HAMMER [1987b] for details). To simplify our notation, we shall 
usually abbreviate and denote J1 u by u and J2y by y. It can he seen that, when 
stabilizing the system Ir in the configuration (2.1), we in fact obtain stabilization of 
the original system I in the following configuration. 

I: ( ¥' .:rr ,q>) y u 1t 

(3.3) 

... 
+ 

(Note that in the configuration {3.2), is to be interpreted as lf j1, in consistency 
with our notational convention.) 
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Let I: : S(Rm) -. S(RP) b~ a strictly causal system. Then, the system i:~ of (3.2) 
is an injective system whenever the pxp matrix r is nonsingular, and thus I~ 
possesses a left inverse. Moreover, when the original system I is recursive, the left 
inverse of I~ is very easy to compute. Indeed, assume that I has a recursive 
representation xk+1 = f(xk,uk). Let u € S(Rm) be an input sequence, and let x := i:u 
be the corresponding output sequence. Denoting z := I 1u, and using the abbreviated 
notation mentioned in the previous paragraph, we obtain z = x + ru, so that zi = 

xi + ~ui for all integers i 0. Therefore, zk + 1 = xk + 1 + ruk + 1 = f(xk, uk) + iuk + 1 = 
f ((z- ~u )k, u k) + ru k + 1 • and, invoking the invertibili ty of ~, we obtain 

(3.4) 

where x0 is the given initial condition of the system I, and where the relations are 
valid for any sequence z E Im i:~. Thus, the input sequence u of Ir can be readily 
computed from the output sequence z of I~ in a recursive manner, using the given 
recursion function and initial conditions of the system i:. This evidently amounts to a 
left inversion of the system Ir, and we shall use these formulas repeatedly in the 
sequel. It is also clear from (3.4) that this left inverse is causal. and we have the 
following 

(3.5) PROPOSITION. Lil I : S(Rm) .... S(Rq) be a strictly causal recursive system 
haying a recursive representation xk+1 = f(xk,uk). Ltl P := max {m, q}, and let 
A pxp constant invertible matrix. Then, the system i:r: S(RID) _. Im Ir defined by 
(3.2) is a bicausal system . 

We can summarize our discussion in the last few paragraphs by saying that we 
can always transform our situation into one where the system that needs to be 
stabilized is injective, even if the original system I is not injective. Consequently, 
from a stabilization point of view. it is not overly restrictive to limit our attention to 
the discussion of injective systems. 
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We provide now a brief survey of the theory of right and of left fraction 
representations for an injective system I: S(ocm)-+ S(RP), where oc > 0 is a fixed, 
but otherwise arbitrary, real number. As we shall see, the theory is surprisingly 
simple. 

A right fraction representation of a system I: S(ocm) -+ S(RP) involves an 
integer q > 0, a subspace SC S(Rq), called the factorization space, and a pair of stable 
systems P: S-+ S(RP) and Q: S-+ S(ocm), where Q is invertible, so that I= PQ-1. 
Of particular importance to us are coprime right fraction representations, which are 
fraction representations in which the systems P and Q are right coprime according 
to the following definition (HAMMER [ 1985a, 1987 a]). 

(3.6) DEFINITION. Let SC S(RQ) be a subspace. A pair of stable systems P: S-+ 
S(RP) and Q: S S(Rm) are right coprime if the following two conditions are 
satisfied. 

(i) For every real -r > 0 there is a real e > 0 such that 

(ii) For every real -r > 0, the set S n S(-rq) is a closed subset of S( -rq).o 

It is quite easy to see why right coprime fraction representations are important 
to our discussion. In (2.4) we saw that the solution of the stabilization problem 
involves the search for a pair of stable systems A and B satisfying the equation 
AP + BQ = M, where P and Q arise from a fraction representation I= PQ-1 of the 
given system I, and where M is a unimodular system. The existence of such 
systems A and B is guarantied whenever P and Q are right coprime, as follows 
(HAMMER [1987 a]). 

(3. 7) THEOREM. Lil I : S(<Xm) -+ S(RP) be an in iective system. and assume it has a 
right coprime fraction representation = Po- 1. where P: s-+ S(RP) rulli Q: s-+ 
S(<Xm ), and where S c S(Rq) for some integer q > 0. Then. for every unimodular 
system M: S S, there exists a pair of stable systems A: S(RP)-+ S(Rq) An.d B: 
S(oc.m) -+ S(RQ) such that AP + BQ = M. 
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Theorem (3.7) underscores the importance of right coprime fraction 
representations to our discussion. At the same time, it opens a new question - what 
systems possess right coprime fraction representations. The existence of right coprime 
fraction representations ls related in a fundamental way to the concept of a 
homogeneous system, which is defined as follows (HAMMER [1985a, 1987a]). 

(3.8) DEFINITION. A system I: S(Rm) .... S(RP) is a homogeneous system if the 
following holds for every real number <X > 0: for every subspace SC S(<Xm) for 
which there exists a real number -r > 0 satisfying I[S] C S(-rP), the restriction of I - -to the closure S of S in S(<Xm) is a continuous map I: S-+ S(,-P).o 

As the next statement shows, (injective) homogeneous systems possess right 
coprime fraction representations, and they are the only systems possessing such 
representations. Thus, the concept of a homogeneous system provides a complete 
characterization of the existence of right coprime fraction representations, in terms 
of input/output properties of the system (HAMMER [1985a, 1987a]). 

(3.9) THEOREM. An injective system I: S(ocm) -+ S(RP) has a right coprime fraction 
representation if and only if it is a homogeneous system . 

Of course, the obvious question now is - how common are homogeneous systems 
in practical applications. A partial answer to this question is given by the following 
statement, which shows that all the systems we consider in our present note are 
homogeneous. More general classes of homogeneous systems are described in the 
references (HAMMER [ 1987 a]). 

(3.10) PROPOSITION. Ltl ~: S(Rm)-+ S(RP) he a recursive system. If has a 
~sive representation xk + 1 = f(xk, uk) with a continuous recursion function f. 
then r is a homogeneous system. 

As we have discussed in detail earlier in this section, we usually prefer to study 
the stabilization of the system Ir of (3.2) instead of studying directly the 
stabilization of the given system !. The reasons for this are twofold. First, the theory 
of fraction repr~sentations for the case of injective syst8ms is simpler and more 
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transparent in its appearance, and I~ is always injective when I is strictly causal. 
Secondly, the solution to the stabilization problem becomes simpler if the system I~ 
is used instead of r, even in the case where I is injective, due to the simplicity of 
the inversion formulas (3.4) for Ir· It is therefore of interest to know that when the 
system I is homogeneous, so also is the system I~ (HAMMER [1987a]). 

(3.11) PROPOSITION . .Lfi I: S(RID)-+ S(RP) he a homogeneous system, and let I~ hi · 
defined as in (3.2). Then, L~: S(Rm)-+ S(RP) is a homogeneous system. 

It is quite easy to construct a right coprime fraction representation for an 
injective homogeneous system I:. : S(cxm) ... S(RP). Indeedt since I is injective, its 
restriction I: S(ocm) ... Im I is a set isomorphism, and, consequently, it possesses an 
inverse r-1: Im I ... S(ocm). We have shown in HAMMER [1987a, section 3] that 
I-1 is a stable system. This is a significant departure from the situation in the case 
of linear systems, where only very special systems possess stable inverses. The root 
of this departure is the fact that the domain S(ocm) of our systems here is compact 
in our topology, a fact that originates from the realistic assumption that all systems 
are operated by bounded input sequences. Thus, we see that the nonlinear framework 
allows us to take advantage of inherent restrictions in the physical operation of 
practical systems to simplify the mathematical structure of the problem. Defining the 
systems 

P := I : Im 1 -+ Im 1, 
(3.12) 

where I denotes the identity system, we obtain a right fraction representation 1 = 

PQ-1, which, as one can readily see, is right coprime. Once we have one right coprime 
fraction representation ! = PQ-1 of the system !t any other right coprime fraction 
representation of I is of the form I = P101-1 where P1 = PM and 01 = QM, and 
where M is a unimodular system (HAMMER [1985a, 1987a]). 

We turn now to left fraction representations. A left fraction representation of a 
nonlinear system I : S(cxm) ... S(RP) involves an integer q > 0, a subspace S C S(Rq). 
and a pair of stable systems G: Im I-+ S and T: S(ocm)-+ S, where G is invertible, 
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such that I= G-1r. The main use of left fraction representations in our context is for 
the purpose of parametrizing the set of pairs of stable systems A, B which satisfy an 
equation of the form AP+ BQ = M. Here, P and Q originate from a right coprime 
fraction representation I= PQ -1 of the same system I, and M is a fixed 
untmodular system. We have already indicated in (2.6) how such a parametrization 
may be obtained. The only questions that we still have to deal with in this context are 
the questions of the existence and of the construction of left fraction representations. 
The existence of left fraction representations for the systems we consider is 
guarantied by the following result, which we reproduce from HAMMER [1987a). 

(3.13) THEOREM. An injective homogeneous system I: S(cx:m) ... S(RP) has a left 
fraction representation. 

It is also quite easy to construct a left fraction representation for an injective 
homogeneous system I: S(cx:m)-+ S(RP). Indeed, using the above mentioned fact that 
i-1: Im I-+ S(cx:m) is a stable system, and letting I: S(cx:m)-+ S(cx:m) be the identity 
map, the pair of stable systems 

G := 1-1: Im l-+ S(cx:m), 
(3.14) 

induces a left fraction representation I = G-1r (HAMMER [1987, section 4]). 

To summarize, we see that a theory of fraction representations can be developed 
for nonlinear systems. This theory bears, in its external appearance, a close 
resemblance to the theory of fraction representations for transfer matrices of linear 
systems. The computations involved in the construction of fraction representations in 
the nonlinear case are relatively simple, and they become particularly simple for 
systems of the form rr, due to the simplicity of the inversion formula (3.4) for these 
systems. In our next section WG discuss the problem of robust stabilization of 
nonlinear systems. The derivation of the results presented in the next section depends 
heavily on the theory of fraction representations that we have described here. 
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4. ROBUST STABILIZATION AND DYNAMICS ASSIGNMENT 

In the present section we provide a survey of our results on the stabilization of 
nonlinear systems, following HAMMER [1987b and 1988]. In general, when 
considering stabilization of a system, one has to pay attention to three main issues -
internal stability, dynamics assignment, and robustness. 

Internal stability is a strong notion of stability, which is essential when the 
stability of composite systems is considered. In our case. internal stability of the 
configuration (3.2) means (i) that the configuration is input/output stable, (ii) that all 
the internal signals of the configuration are bounded, and (iii) that {i) and (ii) 
continue to hold when small noise signals are added to the signals at the points of 
entry of the subsystems I, n, cp, and of which the configuration consists. Only 
internally stable systems possess stable physical implementations. All composite 
systems that we construct below are internally stable. 

The issue of dynamics assignment deals with the characterization of the 
dynamical properties that can be assigned to the internally stable closed loop (3.2), 
through proper choice of the compensators n, 1 and r. It provides the designer with 
the methodology to achieve a desired dynamical behviour for the final stabilized closed 
loop system. We show that, except for some obvious limitations, the stabilized closed 
loop system can be designed to have any desired dynamical behaviour, and we 
provide explicit constructions for compensators achieving that dynamical behaviour. 
In a qualitative way, the situation here is similar to the well known situation in the 
case of pole assignment for linear time invariant sys terns. 

The issue of robustness deals with the stabilization of systems whose descriptions 
are not accurately known. Specifically, the situation in our case is as follows. Recall 
that the systems ! whose stabilization we consider are given by recursive 
representations of the form 

where the initial condition x0 is specified. We shall consider the case where the 
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recursion function f of the system that needs to be stabilized ts not accurately 
known. Rather, a nominal recursion function fn is given for the system I. and the 
actual recursion function f of the system may deviate from its nominal description. 
We assume that the actual recursion function is of the form 

where the function v describes the deviation from nominality. Of course, the 
function v is not known, and, qualitatively speaking, we assume only that a bound 
on the magnitude of its parameters is given. We shall make the last statement more 
precise in the sequel. The fundamental question in the theory of robust stabilization 
can then be stated as follows. Assume that the nominal recursion function fn of the 

• system is given. Is it possible to design an internally stable control configuration that 
will stabilize the actual system I, irrespectively of the deviation function v, as long 
as the latter is continuous and its parameters do not exceed a prespecified bound. If 
such a design is possible, how is it done. 

We describe now our design procedure for the robust stabilization of nonlinear 
systems. The procedure allows dynamics assignment. At the end of the section we 
provide an explicit example on the computation of robustly stabilizing compensators, 
using our procedure. Throughout our review here we shall assume that the system ! 
: S(o;m) -+ S(RP) that needs to be stabilized has an input space which is of the same 
dimension as its output space, namely, that m = p. This assumption simplifies the 
presentation, but is of no fundamental consequence in our framework. The general 
case where m .a: p is treated in HAMMER [1987b, 1988], 

Let then I: S(<X.m)-+ S(Rm) be the system that needs to be stabilized, and 
assume it is strictly causal and homogeneous . As we have discussed before, the basic 
system whose stabilization we shall consider is the system Ir, which here takes the 
form 

where lf is an mxm nonsingular matrix. We recall that the system I¥ is bicausal. 
Om~ of the basic steps in our stabilization procedure is to find an mxm nonsigular 
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matrix r for which the following condition is satisfied. 

(4.3) CONDITION. There is a real number 6 > o such that S(6ID) c Ir[S(amn fQr. 

some real number oc > 0. 

In qualitative terms, the matrix r shifts the image of the system so as to include 
a subspace of the form S(sm); the restriction of the inverse system I,i1: S(sm) .... 
S(<.xffi) becomes then a stable system. The justification of these statements and 
explicit methods for the computation of l' for some common classes of recursive 
systems are given in HAMMER [1987b and 1988]. We comment here that stronger 
results can be obtained when r is allowed to be a nonlinear dynamic system. 
However, quite general results on robust stabilization and dynamics assignment for 
nonlinear systems can be obtained even when r is restricted to be an mxm 
nonsingular matrix, as we assume throughout our discussion here. 

In our present context, the system ! is not accurately known, and we have to 
study the effects of the uncertainty in the description of ! on Condition (4.3). For this 
purpose we need to describe more accurately the nature of the deviation functions v 
in (4.1). We do so by defining a 'neighbourhood' .8(*,~) of radius around the 
nominal system In, which consists of all systems whose deviation from In is 
permissible. We describe .8(*,~) in terms of quantities directly related to the 
recursion functions, distinguishing between two different classes of recursion 
functions, as follows. 

The first class of recursion functions we consider is the class of recursion 
functions with bounded nonlinearities. First, some notation. Given an mxm matrix 
A with gntries aij• we denote IIAII := max {la1jl, i,j = 1, ... ,m}. Let In : S(Rm) .... 
S(Rm) be our nominal system, having a recursive representation xk + 1 = f n (xk, uk) 
with x0 = 0. Assume the nominal recursion function is of the form fn(xk,uk) = 
Fx + Gu + q.(x. u), where F and G are mxm matrices, and where the function : 
Rm x Rm .... Rm is continuous and bounded, say l,(x, u)I N for all x, u E Rm. Now, 
for a real number 6 > 0, we define a class .S(F,G,6) of systems that deviate 'by IS 
from the nominal system In· Specifically, .8(F,G,6) consists of all systems I: S(Rm) 
.... S(Rffi) having recursive representations Xk+1 = fn(xk,uk) + v(xk,uk), x0 = 0, with 
the deviation function v: Rm x Rm .... Rm being of the form v(x,u) = rx + Au + -11/x,u), 
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where r and A are mxm matrices satisfying llfll s t:,. and !IAII s t:,., and where •v 
: Rm x Rm-+ Rm is a bounded continuous function, say l+v<x,u)I s N for all 
x, u E Rm. As usual, we say that a linear system is stabili2able if all its unreachable 
modes correspond to eigenvalues having absolute value strictly less than one. We then 
have the following result, which guaranties the existence of an mxm nonsingular 
matrix r satisfying Condition (4.3) for all our deviated systems. 

(4.4) PROPOSITION . .Ln .8(F,G.~) be the class of systems r: S(Rm) -+ S(Rm) defined 
tn the previous paragraph, and assume that the pair F, G is stabilizable. Then, there 
is a real number > O and an mxm nonsingular matrix r such that the following 
holds true. For every real number 6 > 0, there is a real number <X > 0 satisfying 
S(sm) c rr[S(<Xm)] for all systems r E .S(F,G,6). 

The second class of systems we consider is more general than the one considered 
in Proposition ( 4.4), and it consists of systems having recursion functions which are 
differentiable. The results for this more general class of systems are somewhat 
weaker in the sense that the real number 6 can no longer be chosen arbitrarily 
large. Nevertheless, robust stabilization with dynamics assignment can still be 
achieved for this rather general class of systems. Again, let In : S(Rm) .... S(Rm) be 
our nominal system, having a recursive representation xk+1 = fn(xk,uk) with x0 = 
0. Assume that the nominal recursion function fn is differentiable at the origin and 
that f(0,0) = 0, and let (F,G), where F and G are mxm matrices, be the Jacobian 
matrix of the partial derivatives of fn at the origin. Now, given a real number /l > 
0, we define a class .S(fn,/l) of systems that deviate 'by IS from the nominal system 
In· First, we fix a neighbourhood n of the origin and a real number N > 0. Then, 
,8(fn,L~) consists of all systems I: S(Rm)-+ S(Rm) having recursive representations 
of the form xk+1 = fn(xk,uk) + v(xk,uk)• x0 = 0, where the deviation function v: Rm 
x Rm ...,. Rm satisfies the following conditions. (i) v is twice continuously 
differentiable over n, and all its second order partial derivatives there are bounded 
in absolute value by N; (ii) v(0,0) = O; and (iii) the Jacobian matrix (f.A) of the 
partial derivatives of v at the origin, partitioned into the mxm matrices f and A, 
satisfies 11r11 < 6 and nAII < /l. 

(4.5) PROPOSITION. Lei .8(f n,6) be the class of systems I : S(Rm) .... S(Rm) defined 
in the previous paragraph. Let (F,G), where F Allii G mxm matrices, he the 
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Jacobian matrix of the partial derivatives of the nominal recursion function fn Ai 
the origin. and assume that the pair F, G is stabilizable. Then, there are real 
numbeu 6., '6, °' > O and an mxm nonsingular matrix r such that S(6m) c 
Ir[S(cx.m)] for all systems I E .S(fn,6). 

As an example of a class of systems satisfying the conditions of Proposition{4.5), 
consider the following single-input single-output case. Let the nominal system I:n: 
S(R)-+ S(R) be given by the recursive representation xk+1 = 2Exp(xk + uk) - 2 
=: fn(xk,uk). Now, fix some real number N > 0. Then, the class of systems 
I : S(R) -+ S(R) having recursive representations of the form xk + 1 = 

2Exp(xk + uk) - 2 + axk + hxl + cuk + dul + gxkuk, where lal, lcl < 6. and 
lbl, ldl, Isl < N/2, is a class of systems contained in .8(f n.~). and hence the Proposition 
applies to lt. 

We remark that in HAMMER [1988] we described explicit ways for the 
computation of nonsingular matrices r satisfying the conditions of Propositions (4.4) 
and (4.5). Once the matrix ¥ is at our disposition, we can directly proceed to the 
construction of the stabilizing compensators n and 'P in configuration (3.2). We 
provide now a step by step description of the construction of compensators that 
robustly stabilize our system, and allow for assignment of dynamical properties for 
the final internally stable closed loop. 

Let In: S(Rm) ... S(Rm) be the given nominal system, and let xk+1 = fn(xk,uk) 
be its recursive representation, with the initial condition x0 = 0. As before, we use 
the notation .8( *,6.) for a 'neighbourhood' of 'radius' 6 of the system !, by which 
we simply mean a generic notation, referring to one of the sets .8(F,G,6) or .8(fn,6) 
mentioned in Propositions (4.4) or (4.5). We shall assume that the given nominal 
recursion function fn satisfies all the conditions involved in the use of these sets of 
systems, so that, when .8( *,6.) is .8(F,G,6.), the pair F, G is stabilizable; and when 
.8( *,fl) is .8(f n,6), the Jacobian matrix (F,G) of f n at the origin, when partitioned 
into the pair of mxm matrices F and G, yields a stabilizable pair. 

Our stabilization procedure consists then of the following steps. 
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Step 1. Choose a real number e > 0. This number Will serve as the bound on the 
amplitude of the input sequences of the final stabilized closed-loop system. The choice 
of the number e is usually determined by practical considerations. and there are no 
theoretical restrictions on its choice. 

Step 2. Find a constant mxm nonsingular matrix for which there are three real 
numbers A, 6, oc > 0 such that thg condition S(6P) C I 1[S(ocP)] holds for all systgms 
i: E -8(*,6). The existence of such a matrix is guarantied by Propositions (4.4) and 
(4.5). Explicit methods for the computation of the matrix are described in 
HAMMER [1988]. 

Step 3. Choose a positive number ~. and, using the numbers e, 6, and oc of the 
previous steps, choose constant positive numbers , < 6 and E < min {e/oc, (/(2oc)). 

Step 4. Choose a recursive, unimodular, hicausal, and uniformly eco-continuous 
system M: S(RID)-+ S(Rm). The system M will determine the dynamical behavior 
of the closed loop system, as in (2.5) (see also HAMMER [1987b]). An elementary 
possible choice for M is M := t3I, where I: S(RID)-+ S(RID) is the identity system 
and is a nonzero constant. 

Step 5. Find a real number c > 0 so that the system M' := Mc satisfies the condition 
M'-1[s((5e + t)ID)] C S(cm). This is simply a scaling operation which has no 
dynamical implications, and is performed as follows. In view of the fact that M is 
unimodular, the system M-1 is stable, and, consequently, there is a real number .x > 
0 satisfying M-1[S((5e + ()m)] C S(.xm). But then, taking c := (.x/t), we obtain that 
the system M' := Mc satisfies M-1[s((Se + t)ID)] C S(,m). If we use the choice M = 

f31 mentioned in Step 4, then, for f3 (5e+~)/c, we obtain directly M-1[s((Se+~)ffi)] C 
sc,m). 

Step 6. Construct the static system E: S(Rm) S(tm) given by the representation 

(4.6) E: Yk := e(uk), k = 0, 1, 2, ..... , 

y = Eu, 
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where e is a function Rm~ [-c,c]m defined as follows. For every vector x = (x1, 
... ,xm) E Rm, it takes the value e((x1, ... ,xm)) := (oc1, ... ,ocm), where °'i := x1 if lxil :S t 
and oci := Csign(xi) if lxil > t, and where sign(•) is :t1, depending on the sign of the 
argument. It is clear that the system E is recursive, causal, stable, and uniformly 
! 00 -continuous, and it is in fact an extension of the identity system I: S(tm) S(tm). 

Step 7. Using the nominal system rn, we construct the system rn~ := r + rn and its 
inverse r;1. which exists by virtue of the bicausality of Inr· Using (3.4) and the fact 
that is invertible, we obtain an explicit recursive representation for r;1, given by 

where x0 is the given initial condition of the system In, z is the input sequence of 
-1 -1 Im-, and u is the output sequence of !ti'. We shall only be interested in the 

restriction I:: S(6m)-+ S(<Xm), which, as we mentioned earlier, is a stable and 
bicausal system. 

Step 8. Combining the results of Steps 6 and 7, we construct the system 

-1 as a composition of the two recursive systems Im' and E. The system On* is stable 
and causal, and it can be readily implemented on a digital computer. 

Step 5. Construct the two systems 

where I : S(Rm) -+ S(Rm) is the identity system and £ is from step 3. From these, 
using (2.2), construct the compensators 
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1t = (1/E:)I : S(Rm) ... S(Rm), 
(4.7) 

Notice that the precompensator tt here is simply an amplifier with amplification 
factor of 1/E. 

Steps 1 to 8 complete the construction of compensators tt and cp which, when 
connected in the closed loop !(r,tt,cp)• yield robust stabilization of the system I. The 
closed loop configuration I(r,tt,cp) will be internally stable for any system IE ..8(*,~). 
According to our selection in Step 1, the input sequences to I(r, tt,cp) must be taken 
from S(em). In our construction of the compensators 1t and cp we have used only 
the given nominal recursion function fn, and the compensators we derived are given 
in explicit form and are implementable. We can achieve desirable dynamics 
assignment for the stabilized closed loop system through the selection of the 
un1modular system M in Step 4. Of course, the exact input/output relationship 
induced by the closed loop configuration depends on the particular system I inserted 
in it. Detailed proofs and justification for the design procedure we have outlined here 
are given in HAMMER [1987b and 1988], where more general forms of stabilizing 
compensa tors are also described. 

We conclude this note with a rather simple example on the computation of 
compensators 1t and cp that yield robust stabilization of a given nominal system. The 
example is reproduced from HAMMER [1988], where all the computations are 
described in detail. Here, we only exhibit the class of systems that is stabilized and 
the final form of the compensators, in order to provide a feeling of the explicit form of 
the solutions provided by procedure described before. 

(4.8) EXAMPLE. We consider the design of a robust stabilization scheme for the 
following class of single-input single-output systems. The nominal system ln : S(R) 
S(R) is given by the recursive representation 



The disturbed system I belongs to the class of systems having recursive 
representations of the form 

where t<, >., and er are real numbers in the intervals 

-Yo K s % , -Y3 s >. s Yo, and -1 er 1. 
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Our objective is to design an internally stable configuration that will stabilize any 
system of this class. We use only the parameters of the nominal recursion function. 
We note that r is a scalar here. In HAMMER (1988] we have used the following 
values for the design parameters: e = 2, r = 1, 6 = 1, <X = 19, = 2, , = 1/2, and E = 
1/20. We take the simple choice M = pl for our unimodular system, with p = 25, so 
that, recalling that we have a scalar system here, M = 25. 

The system On* here can be readily computed, and, denoting by {xk} the input 
sequence of On* and by {zk} the output sequence of On*' the representation of On* 
is given by the relations 

k = 0,1,2, .... Here, the function e: R-+ (-1/2, 1/2] is defined by e(x) = x if lxl 5 1/2 
and e(x) = (1/2)sign(x) if lxl > 1/2, where sign(x) = ±1, depending on the sign of x. 
The compensators become 

cp = 25 - (1/2Q)Qn*' 

n = 20. 

Then, for any system I : S(R)-+ S(R) having a recursive representation of the form 
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Xk+1 = (2+K)xk + (2+A)Uk + astn(xkuk), where -% s Ks %, -% :SA s %, and -1 s a 
:S 1, the closed loop L(1, n,cp) around I will be internally stable for all input 
sequences from S(2). As we see, the cornpensators 1t and cp that we obtained can be 
readily implemented. 
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