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ABSTRACT

A generalized module theoretic framework for the study of linear time invariant
systems is developed. Crucial in the present discussion are two new notions: the
generalized “order” and the “adapted bases”. These notions form generalizations of
the classical concepts of order (or degree) and of proper bases, employed in the theory
of linear systems. The resulting framework is then applied to obtain explicit conditions
for system factorization, and to study output feedback systems in which the feedback
compensator is stable.

1. INTRODUCTION

In the present paper we develop a unified module theoretic framework for
the investigation of linear time invariant-systems. “The main purpose is to
show that the theories of realization (Kalman [10]), of state feedback (Hautus
and Heymann [6]), of causality (Hammer and Heymann [5]), of strict
observability (Hammer and Heymann [4]), and of stability (Hammer (2]),
previously studied, can be regarded as different manifestations of a uniform
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underlying algebraic framework. It will be convenient to start with a brief
review of the point of view adopted in the abovementioned works.

Let K be a field, and let L be a linear time invariant system, admitting
inputs fromn the finite dimensional K-linear space U and having its outputs in
the finite dimensional K-linear space Y. For the sake of intuitive convenience,
we assume that L is a discrete time system. Every input sequence to L can
then be regarded as a formal Laurent series u =¥, u,z7, where ¢ is the
time marker, ¢, = — 00, and u, € U for all ¢, The set of all such formal Laurent
series (where t, is allowed to range over all integers, and (u,) over all U) is
denoted by AU. Thus, every input sequence to ¥ is an element in AU.
Similarly, every output sequence from L is an element in AY, so that ¥
induces a map f: AU — AY.

The employment of the sets AU and AY is motivated by certain algebraic
properties that they possess. In particular, it can be shown that the set A K (of
formal Laurent series with coefficients in the base field K) is endowed with a
field structure under the operations of coefficientwise addition and sequence
convolution as multiplication. Under similar operations, the set AU becomes a
linear space over the field AK, and moreover, dim, AU =dimgU. The
importance of these observations stems from the fact that A K-linearity is
closely related to time invariance [11, Chapter 10; 16]. Indeed, when the map
f: AU — AY induced by T is AK-linear, then fzu = zfu for all u € AU, and
the commutativity of f with the shift operator implies the time invariance.
Conversely, under a mild assumption on L [5], it is also true that, when ¥ is
time invariant, the map f: AU— AY induced by L is A K-linear.  Thus,
A K-linear spaces form a natural algebraic framework for the study of linear
time invariant systems. Throughout our discussion we shall limit ourselves and
consider only A K-linear maps f: AU— AY, where U and Y are finite
dimensional K-linear spaces, and we shall denote

m: =dim U, p:=dim,Y

A AK-inear map f:AU— AY can, of course, be represented as a matrix,
relative to specified bases u,,...,u, € AU and y,,.... y, € AY. Of particular
importance is the case when the elements u,,...,u,, belong to U and the
elements y,,...,y, belong to Y (where U is regarded ns a subset of AU, and Y
is regarded as a subset of AY). In this case the matrix representation of f is
called a transfer matrix and it coincides with the classical notion of transfer
matrices. In our discussion below, whenever considering matrix representa-
tions, we shall always assume that they are transfer matrices. For the sake of
conciseness, we shall make no distinction between a map and its transfer
matrix,
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A AK—linear map can also be regarded as an element in a certain space of
Laurent series; as follows. Let U and Y be finite dimensional K-linear spaces,
and let f: AU — AY be a AK-linear map. As is well known, the set of all
K-linear maps U—Y -forms a K-linear space, which we denote by L.
Similarly, the set of all A K-linear maps AU — AY forms a A K-linear space,
which we denote by £. The point is. that £ can be identified with the
A K-linear space of Laurent series AL, as follows [6]. With each element
T =LT,z"' € AL, we associate a AK-linear map fi.: AU — AY, which maps
. an element y = Tu,z~' € AU into

Fo= Z(‘L;Tku,_k)z".

¢

Conversely, let f: AU— AY be a AK-linear map, and define the K-linear
maps . o ‘

i,;U-> AU:u=u (canonical injection),

P AY = Y: Y yz oy,
Then, we associate with f& £ the element T;=LT,z"' € AL, where T, = p, fi,
for all ¢. It can be readily seen that T; =T and that frf-= f. The element
T; € AL is called the transfer function of f (and it is to be distinguished from
the transfer matrix defined above).

We review now a few facts regarding the structure of A K-linear spaces.
Let S be a K-linear space. The set AS contains, as subsets, the set 2* S of all
(polynomial) elements of the form L)_, s,z7*, £, <0, and the set 7S of all
(power series) elements of the form £ ys,z™". In particular, it is well known
that the sets Q*K and €~ K form principal ideal domains under the opera-
tions defined in A K. The sets @* S and Q™S are then 2* K- and 2~ K-modules,
respectively, and rankg. Q%S = rankg-x 27§ = dimS. '

. A AK-inear map f: AU — AY is polynomial if it can be restricted to the
set of polynomials, namely, if f [2* U] C'Q* Y. Equivalently, fis polynomial
if and only if all the entries in its transfer matrix are in * K. A A K-linear
map is called rational if there exists a nonzero polynomial ¢ € €~ K such that
¢ f is a polynomial map. Analogously, a A K-linear map f: AU — \Y is causal’
(respectively, strictly causal) if f{Q~U]cC QY (respectively, fle-ulc

z~'Q7Y). Equivalently, f is causal (respectively, strictly causal) if and only if
all entries in its transfer matrix belong to 2~ K (respectively, s7'Q " K). A
A K-linear map which is both strictly caysal and rational is called a linear i /o
(input /output) map. Finally, a A K-linear map I: AU — AU is bicausal if it is
causal and has a causal inverse: ~
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2. RATIONALITY AND STABILITY: CEN ERAL CONSIDERATIONS

Let S be a finite dimensional K-linear space. An element s € AS is called
Q* K~uational (or sometimes simply rational) if there exists a nonzero poly-
nomial Y € R* K such that ys€2*S. The set of Q* K-rationals in AS is
denoted Qg+ .S. For an element s € Qg. S, the set of polynomials y € Q*K
for which ys €Q*§ is easily seen to be an ideal in 2% K. Since 2*K is a
principal ideal domain, this ideal is generated by a monic polynomial ,,
which we call the least denominator of s. The zeros of y, are called the poles
of s. (In case K =R, the field of real numbers, it is customary to consider not
only poles in R but also in C, the field of complex numbers). The present
definition of Q* K-rationality applies, in particular, also to transfer functions
of A K-linear maps, and we call a AK-linear map f: AU —» AY Q* K-rational
(or, simply, rational) if its transfer function Tz€ AL is. This definition is
clearly consistent with the definition of rational A K-linear maps given in
Section 1.

We turn now to the concept of stability. If 6D is a set of polynomials, we
say that an @* K-rational map is SD-stable if its least denominator is in . In
order to ensure that the set of S)-stable maps has convenient mathematical
properties, a number of restrictions on the set 9 are required [13].

DerFiniTion 2.1, A set @ of (monic) polynomials over K is called a
denominator set if it satisfies the following conditions:

(i) % is multiplicatively closed, i.e., p €D, g € D imply p-q € D.

(ii) The unit polynomial 1 belongs to %, but the zero polynomial does not.

(iif) @ contains at least one polynomial of degree one, i.e., there exists
a € K such that z —a € 9.

(iv) 9 is saturated, i.e., if p € ) and q is a monic divisor of p, then q € 9).

Conditions (i) and (ii) say that 9 is a multiplicative set (see e.g., [17]), so
that one can define the set 24K as the set of fractions p/q where p € Q*K
and q € 9. Conditions (iii) and (iv) are motivated by considerations that are
discussed shortly. We need the following (see also [2]).

~

DerinrTion 2.2, Let 9 be a denominator set and S a K-linear space.
Then an element s € Qg+ S is called stable (or, explicitly, SD-stable) if there
exists p € 9 such that ps € Q*S.

A AK-inear map f: AU — AY is called z/o (mput/autput) stable (in the
sense of ) if its transfer function Tr € AL is SD-stable.

We denote by 249 the set of all @-stable elements in AS.
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The above definition of stability is a generalization to arbitrary fields of
the usual concept of stability in system theory defined in an algebraic
framework. For example, in case K =R, the field of real numbers, we let C~

be a prescribed subset of the complex plane sansfylng C™ NR =@, and let &
be defined by ;

(2.3) D:=(peQ*K|p(z)=0=z€C").

Typical selections of CT are C~ =(z € C:|z| < 1) in the discrete time case,
and C~ =(z € C:Rez < 0) in the continuous time case. The set D defined
by (2.3) satisfies conditions (i)-(iv) of Definition 2.1. In particular, condition
(iii) corresponds to C~ NR.=@. The following statement can be readily
verified.

Proposition 2.4. Let f: AU— AY be a AK-linear map. Then f is i/o
stable (in the sense of D) if and only if f[2U] C QY.

The set 25K is easily seen, by direct computation, to be a subring (with
identity) of the rational field Qg+ x ( = Qg+ K). Actually, the following is true
(see, e.g., Hammer [2], and Hautus and Sontag [9]).

"ProrosiTioN 2.5. The ring 5K is principal ideal domain.

Evidently.. the set Q4S5 is an £25K-module, and it_ can be expressed in
explicit terms in the following form. Let s,,...,s,, be any basis of the K-linear
space S. Then

(2.6) QQS={SEAS|S—Zas‘.a1. .a;nEQQK},
' i=1 ‘

so that also rankg_x 245 = dim,S.

In many situations one is interested in the combination of causality and
stability. The set 245 of all elements in AS that are both causal and 6)stable
is given by the intersection

QpS=ySNQ~S.
In particular, it can be readily seen that the set 23K forms a ring under

the operations of addition and multiplication as defined in A K. Moreover, the
following stronger result was proved by Morse [13].
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ProrosiTion 2.7.  The ring Q3 K is a principal ideal domain.

Again, we obtain that Q3S is an Q5 K-module, and tﬁat. for any basis
$14..4.8,, Of the K-linear space S, explicit representation of 23S is given by

(2.8) Q;S- {se AS|s= ) a;s;: ay,...,a, €K }

i=1

Thus, we also have that rankg_ 255 = dim .

Summarizing our discussion up to this point, we have encountered the
rings Q* K, Q7 K, 94K, and Q4 K, all of which form principal ideal domains
under the operations of addition and multiplication defined in AK. All of
these rings play fundamental roles in the theory of linear time invariant
systems, encompassing the aspects of realization, causality, and stability. As it
turns out, from the algebraic point of view, the dominant property of these
notably different rings happens to be the property they have in common,
namely, the principal ideal domain property. It is therefore convenient to
disregard all their other properties, and to concentrate on the study of
principal ideal domains contained in A K. This is, basically, the main theme of
our present discussion.

Let QK¢ AK be a pnncupal ldeal domain (prOperly contained as a
subring in AK), and let S be a finite dimensional K-linear space. The
A K-linear space AS is then also an 2K-module. Motivated by (2.6) and (2.8),
we define QS to be the QK-submodule of AS generated by S, i.e., if Spreens
is a basis for S, then

m

. m
(2.9) QS:—{sEAS|s= Y a,s,;d,EQK,i=1.....m}.

(=1

‘We shall make use of the following notation:

(2.10) Jox: S = AS: s (natural injection),
' Mag: AS = AS/QS=:T,S (canonical projection).

We extend now our tenminology to the principal ideal domain QK. An
c_lement s€ AS is called an QK-element if s € QS. Thus, a A K-linear map
f: AU = AY is an QK-map in case its transfer function is an @K-clement of
AL. fis called QK-unimodular if it is an invertible 2K-map and its inverse is
also an QK-map. Clearly, a A K-linear map f: AU = AY is an €K-map if and
only if all the entries in its transfer matrix belong to QK. An clement s € AS is
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called QK-rational if there exists a nonzero element ¢ € QK such that
¥s € Q8. The set-of RK-rationals in AS is denoted Qg,.S. Just as in the case of
Q*K, the definition- of QK-rationality also applies to transfer functions .of
A K-linear maps, and- we call a 'AKlinear map QK-rational if its transfer
function is. Thus, a A K-linear map fi AU = AY is QK-rational if and only if
_ there exists a nonzero element € QK such'that Yfis an QK-map.

Intuitively, an 2K-map is a A K-linear map that can be “‘restricted to ©,”
as follows (the proof is by direct computatlon)

ProposiTion 2.11. - Let f: AU - AY be a AK-lincar map. Then, fis an
QK-map if and only if f[QU])C QY.

In similar terms we can also characterize £ K-unimodular maps.

ProrosiTiON 2.12. A AK-Iinedr map I: AU— AU is QK-unimodular if
and only if [QU)=QU (or, equivalently, if and only if ker 7y (= QU).

3. THE ORDER AND ADAPTED BASES

In the present section we derive a finitary characterization of K-maps.
The underlying idea is to generalize the theory of proper bases, which plays a
fundamental role in the finitary characterization of causal maps. We start with
a brief review of the classical notions of order and proper bases. Let
s =TLs,z27" € AS be an element. The order of s is defined by

(3.1) ord s: = {min,(s, «0) if s=0,
| o0 if $ =0.

The leading coefficient § of s is defined as §: =s_4, i s=0, and §: =0 if
s =0. A set of elements’s,,...,s, € AS is properly independent if the leading
coefficients §,,.:.,§, are K-linearly independent [14,15,1]. A basis consisting
of properly independent elements is called a proper basis. The following is an
equivalent characterization of proper bases [1,5].

ProrosiTion-3.2. Let s,,...,s, € AS be a set of nonzero elements Then

$4,...,8, are properly independent if and only ;f the following holds: For
euery set a,...,x, € AK,

ord( Z a,s,) . mm (orda,.s,.).

iml ) =l
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The importance of proper bases is related to the fact that they allow a
finitary characterization of causality, as follows [15,4):

THEOREM '3 3. Let uy,...,u, be a proper busis of the A K-linear space
AU, and let f: AU — AY be a Al\ lmear map. Then, fis causal xfand only if
ord fu; > ordy, foralli=1,.

We turn now to a generallzatlor_x of these concepts to general principal
ideal domains included in A K, starting with the generalization of the concept
of order. As before, we let K ¢ AK be a principal ideal domain properly
contained as a subring in AK, and we let Qg denote the field of quotients
generated by QK. -

For an element s € AS we define the QK-order of s, denoted ordg, s, as
the set of all elements a € Qg for which as € QS, that is,

(3.4) - ord gx s: = (a € Qg las € QS).

Whenever the underlying ring K is fixed, we shall use the simpler notation
ord s for ordgy s. Clearly, when s =0, we have that ordg, s = Qq,, that is,
the whole field of quotients. Further, we have the following

ProrosiTion 3.5. Let s € AS be any element. Then ord s = 0 if and only

if s € QuxS.

Proof. 1f ord s = 0 there is an element 0 = y = p/q € ord s (with p,q €
2K) such that (p/q)s € 2S, whence ps € QS and s is QK-rational. Con-
versely, if s € Qq,S, there exists 0= p €K such that ps € QS, whence
pE€ordsandord s = 0. |

It is easy to see that the set ord gy s is actually an K-module (contained
in Qgk ). In fact, we have :

PropostTioN 3.6. If s€ AS is nonzero,. then ordgys is a cyclic QK-
module.

Proof. We shall prove only the cyclicity, i.e., that ord s is generated by a
single element. Let s = 0, and-consider the set g(s): = {(as|a € ord s} C 2S.
Obviously q(s) is an RK-module and, being a submodule of a finitely
generated module over a P.LD., it is finitely generated. Thus, there are
slements a,...,a, €ords such that a,s;...,a,s generate q(s). Conse-
juently, a,,...,a,, generate ords. Let ¢ € 2K be a common denorminator of
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ay,....a, (e, ¢ €QK, i=1,...,m), and let (y~') [RK] denote the
(cyclic) 2K-module generated by ¢~!. Then, clearly, a,=(a,¢)¢"'€
(" HRK]), i=1,...,m, whence ord s C (¢ 1)[RK], implying that ord s is
also cyclic as claimed. ' ]

Let 0 = s € AS be any element, and let « € Qg be any generator of ord s
(possibly zero). If a’ € Qg is another generator of ord s, then, by Proposition
3.6, it is an associate of a with respect to QK, i.e., a’= pa where p € QK is a
‘unit (i.e., an invertible). It follows that « is uniquely defined modul6 units in
QK, and it will sometimes be convenient to identify ord s with one of its
generators.

We consider next several

ExameLEs 3.7.

(i) K is the ring @~ K of causal elements. In.this case we have that
Qq-« = AK, since, for every 0 = a € AK, at least one of a,a™" is in Q7K.
Thus, every element s € AS is @~ K-rational. Now, let s be a nonzero element
in AS. In view of Propositions 3.5 and 3.6, there is a nonzero element a € AK
such that ordgy s = [~ K}, Since a = 0, there are a unit p of 27K and an
integer k such that a=pz~* Hence, ordg-xs=2z"*[2 K], and it can be
readily seen that k = ord s, where ord s is the order as defined in (3.1). Thus,
ord - ¢ essentially coincides with the classical notion of order (3.1).

(ii) $2K is the ring of polynomials Q* K. In this case Qg+ is the usual
field of rationals. For an element s € AS, ordg+ ¢ s = O if and only if s € Q- S,
i.e., if and only if s is rational (in the classical sense). To compute the order
explicitly, let 0= s€ Qq..S be given as s=(s,,..,s,) with s;=p,/q,,
where p,, q, € * K are coprime for all i =1,...,m. Then ordg.y s is gener-
ated by the rational element q/p, where q and p are the monic polynomials
q =lem(q,,...,q,,) and p =ged(p,,...,p,,) (Icm and ged denoting, respec-
tively, the least common multiple and the greatest common divisor). To see
this, write p, = pp, and q = q;§, for polynomials 7;, §,, i =1,...,m. Then

q. (q q )
=s==8,.,.,—8
p \p V7 pm

=(@P1 2 GmPm) €Q*S,

so that (q/p)[Q* K] C ordg.xs. Conversely, let r/¢t, where r,t € Q7K are
_coprime, be any element in ordg.+s. Then for each i =1,...,m,

-'--'—’-‘-eﬂ*l(.
t q
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Thus, g, is a divisor of r for each i, and since q is the Icm of the q,’s, it follows
that q is a divisor of r as well, that is, r = g7 for some 7€ Q* K. Similarly, ¢isa
divisor of each of the p,’s and hence also of p, so that p=tp for some
peR* K. Thus, :

T4 _90 _4.;
iairaiar i U

so that r/¢t € (q/p)[2* K], whence ordg. . s = (q/p)[2* K].

(iii) QK is the ring Q5K of causal and stable elements.. The quotient
field Qg-x again coincides with the usual field of rationals Qp.x, and an
element s € AS has nonzero Qg K-order if and only if s € Qg+« S. To obtain
the order, let s = (s,...,s,,) € Qg+« S be a nonzero element, and write each
entry s, i= l,...,m, as s, =p;r,/q,, where r,q, €% are coprime (with
respect to Q* K), and where (0= ) p, € @* K is coprime with every element
of . Then it can be verified by direct computation that ord g« s is generated
by an element q/mp € Qg as follows: p = ged (p,,...,p,,), and g and r are
any coprime elements of %D such that ordg-(q/pr)= — ordg-ys. :

We proceed now with our discussion of the order, starting with the
following property, which can be readily verified.

ProposiTioN 3.8. Let s € AS be an element. Then s € QS if and only if
QK Cordgys.

We consider next the behavior of the order under several operations. First
we note that, for any pair s € QuxS and 0 = a € Qg,, we have ordas =
«~'(ord s]. Hence, if ord s = y[RK], then ord as = (a~'y)[QK]. In particu-
lar, if a€ QK, then ord's C ord as. Further, let y,,...,v, € Qg be a set of
elements, and let '€ QK be a nonzero element such that ¢y, € QK for all
{=1,...,n. Let a be the least common multiple (in QK) of yv,,...,¢¥¥,.
Then, we call y: =a/{ a least common QK-multiple of y,,...,y,. Clearly the
intersection v, [QK]N - - - Ny, [RK] = y[QK]. Letting s,,...,5, € QqxS be a
set of nonzero elements with orders ord s; = y,[2K], i=1,...,n, we again
have that ord s; N - - - Nord s, = y[RK], where v is the least common QK- |
multlple of Yiree s ¥ne F mally, considenng the order of the sum s,+s,

, it is easy to see that

(39) ords,n «e+Nords, Cord(s, + -+ +s,).

A set of elements s,,...,5, € AS is QK-ordered (or, simply, ordered) if
ords,C::- Cords,.
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We turn now to characterization of when a A K-linear map f:. AU — \Y is
an QK-map. Recall that fis an QK-map if and only if f{QU]cC QY, and let
0 = u € Qg U be any element. Then ord u = y[Q2K] for some y € Qg and
yu € QU. If fis an RK-map, then f(yu)€ QY, so that QK C ord f(yu) (see
Proposition 3.8); or, equivalently, 2K C ord yf(u)= 1y~ 'ord f(u). Thus we
conclude that y[2K]C ord f(u). and a necessary condition for f to be an
QK-map is that ord u C ord f(u). Tlus condition is actually also sufficient,
and we have the following.

Tueorem 3.10. Let f: AU— AY be a AK-linear map. Then fis an
QK-map if and only if ord u C ord f(u) for each u € Qg U.

Proof. The necessity has been seen above. The sufficiency is seen as
follows. If f is not an QK-map, there is an element u € QU satistying the
condition that f(u)& QY. Then QK Cordu, but 2K ¢ ord f(u), so that
ord u € ord fi (u) concluding the proof. . n

~ The condition of Theorem 3.10 is, of course, not easily tested directly, and
we would like to find a finite “test set” of elements in QU which is
sufficient for verification that a A K-linear map is an 2K-map. That a basis for

Qax U may not be appropriate for this purpose is seen in the following simple
example. :

ExampLe 3.11. * Let QK =Q-K, and let Y U=K2 Tal\e as basis for
Qqi K? the elements

. and define f A_K2 - AK2%by
flu)= “;.'*‘ Uz
Fug) = va:
Obviously, Q7K = ordg-xu, = ordg- «fluy) = ordn -k s = ordg-x f(u,).

Thus, f satisfies the condition of Theorem 3.10 for the basis u,, u,, yet it is
not ari 2~ K-map (that is, not causal): since f(u, — u,) = u, and since

:—l — z—z
ul—“2= 0 §
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we have

ordg-g(u, —uy) =z K Cordg-,u, =27 K.

-Let us explore now the cause of difficulty encountered in. the above
example. If-s,,...,s, € Q.S is a given set of elements and a,...,a, € Qqyy is
any set of scalars, then by (3.9),

n n
N orda;s;Cord Y a;s,.
i=1 j=]

But the above inclusion, in general, need not hold with equality (even when
the s, are Qg linearly independent). This order “deficiency™ also occurs in
the example, and therefore the basis selected there failed as a test set for
causality. Indeed, we have there

2
N ordg-gu; =~ K=ordg-,(u, — uy) =z K.
i=1

Thus, we are motivated to introduce the following

DerintTion 3.12. A set of nonzero elements s,,...,s, € QxS is called
QK-adapted if for every set of scalars a,,...,a, € Qg the condition

n ) n
(3.13) "N orde;s;=ord ) a;s,
i=1 i=1

holds. A basis of QK-adapted elements s,,...,s,, of QpgS is called an
QK-adapted basis. '

. Itis easily verified that in Definition 3.12 we could replace Qg by QK,
ie., 5,...,5, is QK-adapted if and only if (3.13) holds for every set a,,...,a,
€ QK. :

It is important to note that Definition 3.12 reduces to Proposition 3.2 in
the particular case when £K is the ring of power series 2~ K [see Example
3.7(1)]). Thus, Definition 3.12 forms a natural generalization of the notion of
proper bases to the case of general principal ideal domains, in a framework in
which the classical notion of order (3.1) is replaced by ordg.. We start our
investigation of adapted sets with the following

Tueonem 314.  An QK-adapted set of nonzero elements Spheeesd, € QxS
is A K-linearly independent.
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Proof. Assume the set s,,...,3, € Qqx S is AK-linearly dependent. Then,
since §),...,5, are QK-rational, they are also Qplinearly dependent, and
‘there are elements a,...,a, € Qpk, not all zero, such that L7 a;s; =0. If
the set is @K-adapted, then (3.13) holds, and we have that

n
N ord a;s,; = ord0 = Qp.
i=1 '

Thus, it follows that ord a;s; = Qg, i =1,...,n, implying that a;s; = 0 for all
i=1,...,n, a contradiction, since we assumed that all the s,’s are nonzero. ®

. Let sl,...;s" € AS be a set of elements, and let A[s,,...,s,] denote the
A K-linear space spanned by s,,...,5,. We then have the following char-
acterization of 2 K-adapted sets.

Tueorem 3.15. Consider a set of nonzero elements s,,...,s, € QoS
with ord s; = v,[QK], i =1,...,n. Then (s,,....s,) is an @K-adapted set if
and only if {y,5,,+..,Ya S, )} forms a basis for the QK-module A[s,,...,s,]NQS.

Proof. “Only if": First note that from the definition of order, the
QK-module Ag: =R[v,8,....7,8,], generated by (y,s,....,v,8,). is con-
tained in A: = A[s,,...,5,]NQS. To see that the converse inclusion A C 3y,
also holds, let s =17 a;s, (€ QS) be any element of A. If $1oe-0sS, is an
QK-adapted set, then, by (3.13), ord s = N {_,ord a;s,, and by Proposition
38 @KcordsCorda;s;, i=1,...,n. Thus there are elements B; € 0K,
i=1,...,n, such that a; = By, and we have s'= Z,-,ﬁms, € A, as claimed.

"If":. Assume that the set (v,$,,...,7,$,) forms a basis for A, and consider
any element s = ©_,a;s, where a,...,a, € Qqx are not all zero. The proof
will be complete upon showing that ords=N7{_,ord a;s,, and since the
inclusion N {_,ord a;s, C ord s is obvious, it remains only to show that the
converse inclusion holds. To prove the latter, let ord s = y[2K]. Then ys € A
and, by assumption, there are elements B,,...,8, QK such that vs
(=t veys)) =L0, ﬁ,y,s‘ By the uniqueness of the representation it
follows that ya, = B,y,, i =1,...,n, and we have that ya,s, = B,(y,s,) € QS for
i=1,...,n. Hence y € N "_,ord a;s,, concluding the proof. : [

From the above theorem we directly obtain the following characterization
of 2K-adapted bases.

ConoLrany 3.16. Assume the set s,,...,s,, € QxS is a basis for AS
with ord s, = v,[Q2K], i =1,...,m. Then the set (s,,...,s,) is QK-adapted if
and only if (¥,5,,.++,YnS.) Benerates QS.
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One of the fundamental properties of order preserving maps is that they
transform adapted sets into adapted sets, as follows.

Proposition 3.20. Let f: AU — AY be a AK-linear map, and let u,,...,
u, € QqcU be an QK-adapted set. If f is order preserving, then f(u,),...,
f(u,)€ AY is also an Q@K-adapted set.

Proof. We need to.show that for every set ay,...,a, € Qqx»
N orda; f(u;)="ordL]. & f(y;). Indeed,

n n
M orda,f(1;)= N a7 ord f(u,)
i=-1 i-1
by the order preserving property

n
= N a; 'ordy

n
= M ord a;u,
i=1
since the u;’s are K-adapted
n
=ord ) a,y,
i=1
by the order preserving property

==ordf‘( ‘:: a,u,)

i=1

=ord id,f(u,-). |

i=1

We can now state a full characterization of order preserving maps.

Tueorem 3.21. Let f: AU~ AY bea AK-linear map, and let u,.....u,,
€ Qqx U be an QK-adapted basis for AU. Then fis QK-order presercing it and
only if (i) fuy....fu,, are QK-udapted, and (ii) ord u; = ord fu; for all
i=1,...,m,
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ExampLE 3.17. Corollary 3.16 provides a particularly simple way to
determine whether a basis s,,...,s,, of the A K-linear space AS is 2K-adapted.
Indeed, (¥,5;,.+1YmSa) generate QS if and only if the matrix [y,s,,...,7,,5,.]
is QK-unimodular. Thus, the main clause of the corollary can be restated to
read: The basis s,,...,s,, of AS is @K-adapted if und only if det(s,,...,s,] =
Yty Y e v ', where pis a unit in QK. As an illustration of this simple
criterion, we show that the columns

z z2+1 0
si=|2%],  sa=| (22+1)? |, s;=| O
7 zi(z2+1) 23 +1

form an (unordered) 2 * K-adapted basis for A K. Indeed, we have ordg«g s,
=(z"H[R*K], ordg.xs, =((z2+1)"H[R*K], and ordg..s, =((z° +
1)"Y)[Q2* K], whence v 'y 'y; ! =2z(z2+1)(z? +1), which is equal to
det(s,, 55, 55]. If however, s, (say) is replaced by s} =(2z, z7, z*)”, then the
resulting set will no longer be @*K-adapted, since det[s{, s,, 53] = (z* +
1)(z% +1)(z” +22).

We arrive now at a finitary characterization of QK-maps, which is in
complete analogy to Theorem 3.3.

THEOREM 3.18. Let f: AU— AY be a A K-linear map, and assume that
u,, m is an QK-adapted basis for AU. Then fis an QK-map if and only if
ord u, C ord f(u,)for alli=1,.

Proof. By Theorem 3.10 the condition is clearly necessary. To see
sufficiency, assume that ord u; = y,[QK], i =1,...,m. By Corollary 3.16 the
set (Y,up,.. . Ymty) Benerates QU. But, since ord u, Cord f(u;) for all i=
1,...,m, it follows that v, f(u,) = f(v,u,) € QY, whence f[QU]C QY and fis
an QK-map n

Consider an QK-unimodular map [: AU — AU. Clearly, for every pair
u,v € AU, we have (see Theorem 3.10) that orduCordlu and ordvC
ord [~'v. Substituting v = [u, we obtain that also ord fu Cord u, so that
ord [u = ord u for every u € AU. Thus, an @K-unimodular map preserves the
QK-order. We now generalize this notion.

Derinimion 3.19. A AKlinear map f: AU~ AY is called 2K-order
preserving (or, simply, order preserving) if for each u € QqU, ordu =

ord f(u).
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Proof. The necessity of conditions (i) and (ii) follows directly from
Proposition 3.20 and Definition 3.19, respectively. We now prove the “if"
direction. Assume that conditions (i) and (ii) hold, and let u=X¥. a;u,,
where ‘a,,...,a,, € Qpi, be any element in Qg U. Then since the u,’s are
QK-adapted, we have by (3.13) that ord u (= ord L% ,a;11;) = N %, ord a4,
and it follows that’

m

ordu = {'\‘ ord a1,
=

m
= M orda,fu, [since ord fu, = ord u;]
i=1

=md( 5 f) [by ()]

~ord f( ‘i a‘u,)
= ord f(u),

whence fis order preserving, |

We can now prove the converse direction of our previous observation that
Q2 K-unimodular maps are order preserving.

ConowLary 3.22. Let f: AU— AU be a AK-linear map. Then f is
QK-unimodular if and only if it is QK-order preserving.

Proof. The “only if" direction was considered above. Conversely, if f is
order preserving then it is clearly injective, and hence is a A K-linear
isomorphism AU = AU, so that f~! exists. By assumption ord fu = ord u for
all u € AU. Letting v: = fu we obtzun ord v = ord f v for all v € AU. Thus,
by Theorem 3.10, both of fand f~! are 2K-maps, and f'is @K-unimoduiar. m

4. BOUNDED QK-MODULES AND THE EXISTENCE OF ADAPTED
BASES

Before considering the existence of 2K-adapted bases, it is helpful to
study a particular type of 2K-submodules of AS. Let A C AS be an QK-mod-
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ule. We say that A is QK-rational if it consists exclusively of QK-rational
elements. An QK-module A € AS is-QK-bounded if there exists a nonzero
element y € Qg such that y[A]C QS (i.e., ys €QS for every s € A). Let
A Cc AS be a bounded 2K-module. We define the order of A, denoted
ordg. A, as the class of all elements y € Qg satisfying y[A] C QS. It is easily
seen that ordg A = N, ¢ yordg, s. If A is a nonzero submodule and 0 = s € A
is any element, then ord A-C ord s, so that from the fact that QK is a principal
ideal domain and ord s is a cyclic module (Proposition 3.6) it follows that also
ord A is cyclic and rankgg A = 1. Thus, if A = 0 there is an element ¢ € Qg
such that ordgy A = Y[QK]). Otherwise, if A = 0, we have the ordgy A = Q.

Clearly, every bounded 2K-module is necessarily QK-rational as well. The
converse, however, is not true in general, and a rational 2K-module may be
not bounded. For example when QK is the ring of power series, then the
space AS is a rational 2K-module, but it is evidently not bounded. Neverthe-
less, the following is true.

Lemma 4.1, Let A C AS be a rational QK-submodule. Then A is bounded
if and only if A has ﬁmte rank (i.e., is finitely generated), in which case
rank A < dim S.

Proof. “Only if": Let A be bounded, and let ord A = ¢[QK] with
0 =y € Qgk. Then YA C Q8, so that, in view of the fact that @K is a principal
ideal domain, rank $A < rank Q8 = dim S. But, clearly, rank A = mnk ¥4, con-
cluding the proof of the “only if” part.

“If": Assume A has finite rank, and let d,...,d,, € § with ord d, = (v,)qx
be a basis. Then, since {d,) are rational, y, = 0 for all i=1,...,n, and, by
definition, for every d €4 there are elements «,...,a, €QK such that
d=XY7_a,d, But then

ordd=ord Y a,d,

i=1
D> N orda,d,
i=1
[since, for every a; EQK, ordd; = a;[ord;d;] Cord &, d,, i = 1,...,n],
n ) .
D N ordd,=:y[9K]
i=1 )

where ¢ is the least. common QK-multiple of y,,...,¥,.,
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. Further, since ;=0 foralli=1,...,n, we have that ¢ = 0, so that, since
by construction ¢[A] C RS, the module A is bounded. That rank A € dim$S
follows from rank 4 = rank Y[A), since \[/[A] c QS. _ , |

In [5, Theorem 6.11] it was shown (m our present terminology) that every
bounded 2~ K-module has an £~ K-adapted basis. Actually, this result is just a
manifestation of the following general statement. '

THEOI\EM 4.2, Let A c AS be a nonzero bounded QK—module. Then:

(i) A has an ordered QK-udapted basis d,,...,d,.

(i) If di.... dl is any other ordered QK—adapted basis of A, then
ordd,‘=ordd,,| <5t

Before proving Theorem 4.2, it will be convenient to recall the Smith
canonical form theorem (see, e.g., [12]).

Tueorem 4.3. Let T be an m X n QK-matrix. Then there are QK-uni-
modular matrices M, and My of dimensions m X m and n X n, respectively,
and elements §,,...,8, € QK, uniquely defined up to multiples of units of
QK, where r £ min(m, n) and §,, | divides §, for all i =1,...,r — 1, such that

(4.4) T=M_ DM,

where D is the m X n matrix given by D = diag(§,,...,5,, 0,...,0).

The elements §,,...,8, in Theorem 4.3 are called the invariant fuctors
of T. '

Proof of Theorem 4.2. Assume that A € AS with dim S = m is a bounded
QK-module with ord A = ¢[QK], and, in view of Lemma 4.1, letd,,...,d, €A
be a basis for A. Then yd,,...,¢d, €QS, and the m X r matrix ¢T: =

(¢dy,....¢d,) (where yd, is viewed as a column vector) has Smith represen-
tation ‘

(4.5) YT =M, DM,,
where
8, 0
D= ;
0 8
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and the §, € QK (with §,,, dividiné 8,) are the invariant factors of yT. We
note that, by definition of r, §; = 0 for all i =1,...,r. Dividing both sides of
(4.5) by y yields

(4.6) T =M, Dy M,

where D, is the Smith-McMillan form of D and is given by

8./ 0

Let dg; denote the ith column of D,. The columns d,,...,d,, € QgxS
constitute an {K-adapted set, since for every set a,,...,a, € Qpx we have
that

'd=‘2“¢do:= a,§5_ ’
i=1 7

and clearly ordd = N {_,ord(a,§; /¢)= N ,ord a,d,,. Furthermore, since
M, is QK-unimodular, it follows by Proposition 3.20 that the columns of
M, D,, given by (8, /V)M_,,....(8,/¥)M,, (where M, is the ith column
of M, ), are QK-adapted as well. ' .

Now, since My is QK-unimodular, we have that A = T[QS]=
M DyMg[Q28] = M, D,[QS], so that the columns of M, D, form a basis of 4,
and, as we have just shown, this basis is 2 K-adapted. To show that this basis
is also ordered, we note that, since the greatest common 2 K-divisor of all
entries in M, is 1 for all i =1,,..,r, we have ord(5, /¢)M, ; = (/8 RK],
i=1,...,r. Hence, since §,,, divides §; for all i=1,...,r =1, we obtain
ord(8,/Y)M,, C--- Cord(8,/¢)M,. Thus, the columns (8, /¢)\,,,

S, /¥IMp,_ys....(8, /¥)M,, form an ordered adapted basis of ). This
concludes our proof. -
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Let A C AS be a bounded 2K-module, and let d,,...,d, be an ordered
adapted basis of A. We call the set ordd, Cordd, C -+ - Cordd, the order
trace of A. In view of Theorem 4.2(ii), the order trace is uniquely determined
by A. It is also easy to see that ord A = ord d,. Letting D: = [d,,...,d,] be the
corresponding matrix, we can represent A as A = D[2K']. In case rank A =
dim S, we say that the module A is full.

Tueorem 4.7. Let A, A, C AS be bounded QK-submodules given by
A, = D\QS and A, = A,QS, respectively. Then A, C A, if and only if there
exists an QK-matrix R (i.e., with entries in QK) such that D, = D R.

Proof. Elementary. |

CoroLLARY 4.8. Let A}, A, C AS be bounded QK-submodules given by
A= D,QS and &, = D,Q8S. Assume A is full, and define R: = D[ 'D,. Then
A,c A, ifand only 1fR is an QK-mamx with equality holding if and only if
Ris 9K~unimodular.

We turn now to the existence of QK-adapted bases for A K-linear spaces
A AK-linear subspace @ C AS is called QK—ratzonal if it has a basis s,,..
consisting of K-rational vectors.

TueoreMm 4.9. Let dim S =m, and let R C AS be a nonzero QK-rational
A K-linear subspace. Then (i) R has an QK-adapted basis, and (ii) every
QK-adapted subset s,,...,5;€R can be extended to an QK-udapted basis
for . '

Proof. (i): Let s,,...,s, be an QK-rational basis for @, and write
R={s,,...,5;) (where the s,'s are regarded as column vectors). The m X k
QK-rational matrix R has a Smith-McMillan representation

R=M,DM,,

where M; and Mg are QK-unimodular, and where D is the Smith-McMillan
form of R. Then & = R[AK*]=M, DM [AK¥*]=M, D[AK*], and the
columns of M ¢ D constitute an QK-adapted basis for R (see proof of Theorem
4.2).

(ii): Let s,...,5; € A constitute an QK-adapted set. We shall demonstrate
a procedure for extending this set to an QK-adapted basis for R, First recall
that the set s,,...,s; is AK-linearly independent (Theorem 3.14), and hence
can be extended to an QK-rational basis s,,...,s, of R. Let s, ,,...,s, be
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such an extension. Define the matrices R: = [s,,...,5;] and B ={s,, ,,....5,).
Now, let M, be an QK-unimodular matrix such that

Rab!LD

where

o-(5)
0
and D, is a_square (I X ) matrix (the existence of M, follows by the Hermite

normal form theorem; see e.g. [12]). By Proposition 3.20, the columns of D,
are still K-adapted. Next, decompose the representation as

R= [ML-ME][ ] M| Dy,

where M} ism X 1. Let y € an be a nonzero element such that y Dg ! is an
K-matrix, and let 0=y €N l,_,“ord s; be any element, so that \bR is an
QK-matrix. Define the matrix R: = yyR. Clearly, the columns of [R, R] still
form a basis for &,. Now, upon defining R' = M| L IR, we obtain

(4.10) [R,R]=M,[D,R]
(M}, M R
e o RL|'
where
Rf= Ry
R}

is a decomposition of R! such that R} is (m =1)Xx(k = 1). In view of the
nonsingularity of D, and the fact that R== yYR and YR is an QK-matrix, it
follows that the matrix P: = Dy 'R} is an QK-matrix. Now we can write

(R, B]—[ML.ML][O ,?l][' "
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Further, let
R} =M, DM,

be the Smith-McMillan representation of R}. Continuing from (4.10), we then

have
.
_ D, O}|{I P
R,R] =M} M} ‘
[ D 0 1 P
TR | A
| 0 M, DMg||0 I
= [m} Mﬁ'zv‘r]D° ot
LU o Dl M|
I
Now, the matrix [ o M ] is clearly 2 K-unimodular, so that the columns of
. R
the matrix

D: = [M,[,MZICIL][?)° g]

also span A.. Moreover, we claim that the columns of D form an 2K-adapted
set. In(}eed, by construction, the columns of D, form an QK-adapted set, and,
since D is diagonal, its columns also form an 2K-adapted set. This implies

: D, O
that the columns of the block diagonal matrix { o ] form an 2K-adapted

set. But then, since the matrix (M}, MM, ] is gK—ulr?imodulnr, it follows by
Proposition 3.20 that the columns of D form an QK-adapted basis of A.
Finally, noting that D = [R, M} M, D], we obtain that the columns of M3 M, D
extend s,,...,s, into an 2K-adapted basis of R, concluding our proof. n

.We are now in a position to give an algebraic characterization of the order
trace.

ProposiTion 4.11.  Let A, A' € AS be nonzero and bounded QK-modules
of equal rank n. Then there exists an QK-unimodular map M: AS — AS such
that M[A) = A' if and only if A and A' have the same order traces.
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Proof. Assume first that an QK-unimodulai map M exists such that
M([A)=4', and let d,,...,d, be an ordered QK-adapted basis for A. Clearly
then, the set d}: = Md,,...,d}: = Md,, is a basis for A'. Moreover, since M is
order preserving, it follows by Proposition 3.20 that this basis is in fact
ordered and QK—adapted. Thus, in view of Theorem 4.2, the order traces of \
and A' are the same.

Conversely, let A and A' have the same order traces, and let d,,...,d, and
d},....d} be ordéred QK-adapted bases for A and A', respectively. Extend as
in Theorem 4.9, these bases of A and A' to 2K-adapted bases for AS:
dy,....d,,d,,p....d, and d},....d}, d}, ....,d}, respectively. Let y; and
vl respeclively, be generators of ord d; and ordd}, i=n+1,...,m, and
define the A K-linear map M: AS — AS through

d}, i=1,...,n,
Md;= { -1,1 1 ; -

Y 'vd, i=n+l....m
Clearly ord Md, = ord d, for all i =1,...,m, and, since both of the bases are
adapted, Theorem 3.21 .md Corollary 3 22 imply that M is QK-unimodular.
That M[A] = A' follows from the construction. ]

Related to the notion of 2 K-adapted bases is also the following

DeriniTiON 4.12. Let },...,R, C AS be QK-rational AK-linear sub-
spaces. Then R,,...; R, are called QK-adapted if for every set of elements
Spsees8y, Where s, €R, i=1,....k,

k
ord(s,+ -+ +§,)= N ords,.
i1

It follows readily from the above definition that the concept of 2K-adapted
subspaces is equivalent to the following: Let } ,,..., R, € AS be QK-rational
A K-linear subspaces; and let d;,...,d;, be a b.\srs for R,, i=1,...,k: Then
the subspaces R ,,..., R, are QK-ndapted if and only i d ey
diyse.ndyy,isan QK-ad.xpted basis for &, + « - - + R ,. Naturally, QK-.xdapted
spaces are A K-linearly independent so that the above sum of subspaces is, in
fact, a direct sum. Accordingly, we speak of QK-adapted direct sums of
A K-linear spaces.

The concept of Q2K-adapted subspaces is of course a generaluatron to
arbitrary P.L.D.’s of the coucept of properly mdependent and stably mdepen-
dent spaces as defined in [3,7,8].

Theorem 4.9 leads to the following useful result.



344 JACOB HAMMER AND MICHAEL HEYMANN

CoroLrLaRy 4.13. Let A, C R, (< AS) be QK-rational A K-linear sub-
spaces. Then R, has an QK-adapted direct summand in R ,.

5. QK-FACTORIZATION AND INVERTIBILITY

In the present section we consider the following factorization problem.
Let f,: AU = AY and f,: AU — AW be A K-linear maps, and let K ¢ AK be
a principal ideal domain. Under what conditions does there exist an @K-map
R: AY = AW such that f, = hf,? We first give an abstract version of the
factorization conditions, and then we state them in explicit matrix form.
Assume first that there exists an K-map h: AY = AW such that f; =h- f;,
and choose any element u € AU which satisfies the condition f(u) € QY, or,
in the notation of (2.10), that u € ker mg f,. Then, obviously, f,(u) h- f(u)
€ QW, so that u € ker g f;- Thus, the existence of the 2K-map i satisfying
fo = If, implies that ker mgy f, C kermg f5. In case the maps f, and £ are
QK-rational, the converse of this statement is also true, and we. have the
following

Tueonem 5.1, Let f,: AU~ AY and f,: AU — AW be QK-rational A K-
linear maps. There exists an QK-map R: AY = AW such that f,=h- - fyifand
only if kermg, f; C kermyy f.

We prove Theorem 5.1 with the aid of the following lemmas.

Lemma 5.2. Let f: AU— AY be an QK-rational AK-linear map. Let

r: = dim, . Im f, and let Yy C Y be any rdimensional subspace. Then there
exists an QK-unimodular map M: AY — AY such that Im M- f= AY,,.

Proof. Let 9 denote the transfer matrix of f, nnd let the Smith-McMillan
representation of & be given as
J =M, DM,,
where M; and M, are QK-unimodular matrices, and D =diag (y,,...,

Y.,0,...,0) is the Smith-McMillan form of J. Now, M[! is also @K-unimodu-
lar and upon identifying maps with their transfer matnces we obtain

Im(M;'T ) = DMy AY = DAY = [:) g]m’.
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We now define an invertible K-linear map V:Y — Y such that

Imv[" 0]=Yo.
0 0

Then we obtain
—lar I, 0
Im(VM['\T )=V AY = AY,,
00
so the proof is complete upon setting M: = VM. |

Lemma 5.3. Let f: AU— AY be a AK-linear map. IfR Ckermy fis a
A K-linear subspace, then R C ker f.

Proof. Assume u€®R C kermyif, where @ is a AK-linear subspace.
Then au € kermy fforall a € AK, 'I'husf(au) af(u)eQK forala€ AK,
whence, since 2K = A K, necessarily f(u)= 0 and u € ker f. n

Proof of Theorem 5.1. The necessity was already seen at the beginning of
the section. To prove the sufficiency, assume that kermg, f; C ker = f;. Let
r: =dim, . Im £, and let Y, be any r-dimensional subspace of Y. By Lemma
5.2 there exists an 2K-unimodular map M: AY — AY such that Im' Mf, = AY,.
Denoting f: = Mf,, it follows at once, from the necessity condition aboxe
combined with the fact that both M and M~" are @K-maps, that Ker mgy f, =
ker mo E. Thus, ker i Jo C ker my, f,. Lemma 5.3 then implies that ker f, C
ker f;, so that there exists a A K-linear map hy: AY = AW such that hy fj = f£i.
We still have to show that A, can be chosen as an QK-map. Let Y, CY be a
direct summand of Y in Y, that is, Y = Y,@Y,. Also, let P: AY — .\Y denote
the projection onto AY, along AY,, i.e., if y ="y, + y, € AY is the decomposi-
tion of y into its components y, € AY, and y, € AY,, then P(y) =y, We
now define the map h: = hy- P- M, and for each u € AU we have

(54)  hfi(u)=hPMfi(u)=hoPfo(u)=h oi;)(.“)af;(“.)-

whence hf, = f,. To conclude the proof, we need to show that h is an
2 K-map. Since, by definition, M is an QK-map, it suffices to prove that so is
also hyP. To this end, first note that every element y € QY decomposes
uniquely into y = y, + y, with y, € QY, and y, € QY. Thus, for every y € QY
noting that y, € f,[ker 7y £,], we obtain

"-of(y)= Fo(Uo)’ ’;op(!lo) = ’Topl"’fu(“) =hfi(u)=flu)
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for a suitable u & kermg, fi- Since by hypothesis ker g fic ker mg fo it
follows that A [’( y)= fi(u)€QW, so that h,P{QY)C QW, and hyP is an
QK-map. This completes our proof ]

Theorem 5.1 admits the following -

ConorLany 55. Let f,, f,: AU— AY be QK-rational A!(-li'neu_r maps.
There exists an K-unimodular map M: AY — AY such that f, = Mf, if and
only if ker mgy. f, = ker mg,. fo.

Proof. The necessity follows immediately from Theorem 5.1. To see the
sufficiency, suppose kermgy Ji=ker Tox <fp» so that, by Lemma 5.3, also
ker f, =ker f, and dimIm f, =dimIm f,=:r. Let Y, C Y be an rdimensional
K-linear subspace, and let M,, M,: AY = AY be £K-unimodular maps such
that Im M, f, = Im M, f, = AY, (see Lemma 5.2). Denoting fio:=M,f (i=
1,2), we obvxously still have that ker myy £l = ker 7y fror By Theorem 5.1
there are then QK-maps hyg, fiag: AY = AY such that fo = by, fo and fio =
Fiao foo- Let Y, C Y be a direct summand of Y, in Y, and let P: AY — AY be
the projection defined in the proof of Theorem 5.1. Now define the QK-maps
hy= P(hy — )P+ 1 and hy = P(hm - I)P+ I, where I is the identity map in
AY. Clearly then also f,, = h \fio and fio = hy foo and also b, = hhy =1, as
can be verified by direct computation. It follows that A, is @K-unimodular,
and the QK-unimodular map M: = Mz 'h M, satisfies the condition of the
corollary. |

We call a AK-inear map f: AU— AY QK-left invertible if it has an
QK-map as a left inverse, that is, if there exists an @K-map h: AY — AU such
that Af= I. The following further corollary to Theorem 5.1 characterizes the
QK-left invertible maps.

ConoLrary 5.6. An QK-rational AK-linear map f: AU > AY is QK-left
invertible if and only if ker mg, fC QU.

Proof,  First note that ker g I = QU, where I: AU — AU is the identity
map. If f has an QK-left inverse h: AY ~ AU (i.e. if =1I), then kermgy f C
kermg, h f = QU. Conversely, if kerﬂanCQU (= kermg,.I), then the ex-
istence of /i is ensured by Theorem 5.1. ]

Before concluding this section, we wish to express in an explicit form the
main quantities that appeared in our discussion. Let f: AU— AY be an
QK-rational A K-linear map. We start with an explicit representation of the
QK-module ker my, f: We shall identify the map f with its transfer matrix, and
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shall denote r: = dim, < Im f. Let M, : AY — AY and My: AU — AU be QK-
unimodular maps such that f= M, D M, where the matrix D: AU — AY is of
the form

D=(Do o)
0 o0/

with Dy: AK" = AK' (square) nonsingular. One possible choice of D is, of
course, the Smith-McMillan canonical form of f. Also, we let U;@U, = U be a
direct sum decomposition, where AU, = ker D and AU, is the domain of D,,.

Now, kermy, f=kermyM; DM, = My'[kermyM, D], and, applying
Corollary 5.5, we obtain that ker 7y, f= My ![ker my. D]. Further, it is readily
seen that ker my, D = Dy '[QU,)®AU, and consequently we have

(5.7) ker gy f= My [ D5 ' [QU, ] ©AU, ]
and
(5.8) ker f=M;'[AY,].

Defining now the map

% ) -1

F, = M,;‘(D(‘; ):AUI—-v AU,
we have that

(5.9) kermgy f= £, [QU, | +ker £,

so that f, generates the “bounded part” of ker myy f.
Next, let £*: AU = AY’ be a A K-linear map. We express in explicit matrix
form the condition of Theorem 5.1. The.inclusion kermg, f C kermg f is
" evidently equivalent to f ‘[ker myy f ] C QY". Substituting now (5.9), and not-
ing that ker fis a A K-linear subspace, the latter condition can be split into the
two conditions: (i) f'f,[QU,]c QY", (i) f* (ker f ] = 0. These conditions are
then, respectively, equivalent to simply (ia) ffe is an QK-map, and (iia)
ker f C ker f°.
Returning now to Theorem 5.1, we can summarize as follows: There exists

an QK-map h: Y = AY such that f'=hf if and only if f'f, is an QK-mmap



348 : JACOB HAMMER AND MICHAEL HEYMANN

and ker fc ker f'. Moreover, through a direct computation one can show
that, if A exists, then it is necessarily of the form

(5.10) - h= (f’f,,yl....,yp_,)ME‘,

where p: = dimy Y, and y,,...,y,_, are (arbitrary) elements in QY’. Thus, the
map f,, which generates the “bounded part” of kermy, f;, plays a central
role in factorization theory, serving as.a certain generalized type of “inverse”
of f for the purpose of explicit @ K-factorization.

6. PRECOMPENSATION AND STABLE OUTPUT FEEDBACK

We turn now to a brief discussion of some applications of the above
factorization theory to the study of feedback systems, in which the feedback
compensator is stable (and causal). Let f: AU — AY be a linear i /o map (with
U and Y finite dimensional), and let [: AU — AU be a bicausal A K-linear map
(i.e., @~ K-unimodular) which we regard as a precompensator for f. We can
express [~! as

(6.1) | =LY+ F),

where L: U — U is static (6] and where A is strictly causal. If, additionally, we
can express i as b = gf for some causal map g: AY = AU, then we can give [
an output feedback interpretation through the formula

fi=f(1+ &) 'L,

which can be represented as the following block diagram:

(6.2)

The map g is then clearly a causal dynamic output feedback coinpensator,
and L is a coordinate transformation map in the input value space. The
problem of representing a precompensator [ as a configuration of the form
(6.2) is considered in [3]. In the present section we consider this problem
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under the additional requirement that the feedback compensator g be stable.
From the applications point of view, it is, of course, preferable to deal with
stable compensators, whenever this is possible. Clearly, the feedback com-
pensator can be chosen as a stable (and causal) system exactly when the map
h of (6.1) can be factored over f through an Q4 K-map z. Using Theorem 3.1,
we arrive at the following.

Tueonem 6.3.  Let f: AU— AY be a rational linear i/o map, let [: AU
— AU be a rational bicausal precompensator for f, and express [ as in (6.1).
There exists a causal and stable output feedback representation for [ if and
only ifkervrn;xf C kerﬂnsxﬁ.

ReEmark 6.4. A system is said to be intemally stable if all its modes,
including the unreachable and the unobservable ones, are stable. The notion
of internal stability is particularly important when considering composite
systems, since the composition may generate hidden modes, and if these are
unstable, the stability of the final system will of course be destroyed. We are
presently interested in the composite system (6.2). It can be shown that (6.2)
is internally stable if and only if all four of the maps, [,.f1, [g, and fig are i/o

“stable [3]. In particular, in .the case of stable feedback, g is stable, and we
obtain that (6.2) is internally stable if and only if both of the maps [ and f1
are i/o stable.

We say that a linear i/o map f: AU = AY is Q,K-minimum phase (or,
simply, minimum phase) if it is an Qg K-map (i.e., stable) and is Q5 K-left
invertible. Thus, using Proposition 2.4 and Corollary 5.6, we obtain that f is
{2, K-minimum phase precisely whenever

(8.5) kermy_x f=QqU.
We recall further [5) that a linear i /0 map f is called nonlatent if
(6.6) ker mg-x f = 20" U.

Clearly, (6.6) is equivalent to kermg-x(zf) =2~ U. Thus, by Proposition 2.4
and Corollary 5.8, f is nonlatent if and only if zf is both causal and Q ~ K-left
invertible. Obviously, in the last statement, zf can be replaced by (= + a)f,
where a is any element in the field K. ’

In particular, assume that z + a is in the denominator set '?, Then, clearly,
fis minimum phase if and only if (z + «)f is. Combining now (6.5) and (6.6),
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we obtain that f is both nonlatent and minimum phase if and only‘if
(6.7) : ker‘rrn;x]=('z+a)9‘5U.

where = + a€ 9.
We now have the following theorem which is an analog to Corollary 5.4 in

().

Tueonrem 6.8. Let f: AU — AY be an i/o-stable linear i /o map. Assume
that the denominator set % contains two different first degree polynomials
2+ a and z + B. Then f is nonlatent and minimum phase if and only if every
Q4 K-unimodular precompensator [: AU — AU has a causal and stable feed-
back representation (L, g), i.e., there exists a pair (L, g), where L is static
and g is causal and i /o stable, such that [ = I+ gf ] 'L.

Proof. If fis nonlatent and minimum phase, then
kel‘ ﬂn;xf-'= zﬂa U & ker Wn‘;K’T

for every strictly causal and stable /. Hence sufficiency holds, and I [ = (I +
h)~'L) has a causal and stable feedback representation. Conversely, assume
that every Q5 K-unimodular [ has a causal and stable feedback representation
(L,8).In pamcular consider the 05 K-unimodular precompensator

I: AU— AU,

nN
+
=™IR

where z + a, 2+ B €4 and a= B. Then, denoting y: = 8 — &, we obtain that
[=[I+h)"", where A=[y/(z + a)]l. Now, by assumption, there exists a
causal and i/o-stable map g such that A= gf, whence, by Theorem 5.1,
kermg Jc ker 7 «h=(z + a)Q3 U. Furthermore, since f is strictly” causal
and i/o stable, also (z + a)QqU C kermy f,and we obtain that ker L f=

(z + a)25 U.-Thus, by (6.7), fis nonlatent and minimum phase. u

The interest in Theorem 6.8 derives from the fact that stable injective
linear i/s maps (6] are always nonlatent and minimum phase. This fact is seen
as follows. It was shown in [4] that if f: AU— AY is an injective linear i/s
map, it is strictly observable, i.e. ker my. . f € % U. Let D be an Q* K-adapted
basis matrix for kermg. f, that is, DQ* U = kermg. f It is easily verified
that we then also have that DQyU = kerm, ¢ f. Now, the strict observability
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of f implies that D is a polynomial matrix, and thus DQWU C QU (since
Q*K c Q,K). We conclude that kermg K f € QuU, and if the i/s map fis
also stable, the minimum phase property [see (6.5)] follows. That injective
linear i/s maps are nonlatent was proved in [5, Theorem 5.5]. We summarize
the above in the following

ProposiTioN 6.9. If f: AU— AY is a stable m]ectme linear i/s map,
then it is nonlatent and. minimum phase.

We can now combine Theorem 6.8 with Proposition 6.9 to obtain the
following.interesting result.

TueoneM 6.10. Let f: AU — AY be a stable, injective linear i /o map,
and let [: AU — AU be an 5 K-unimodular precompensator for f. Then [ has
a stable causal (dynamic) state feedback representation in every stable
realization of f.

The authors wish to express their thanks to M. L. J. Hautus for various
illumninating discussions and insights.
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