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ABSTRACT 

A generalized module theoretic framework for the study of linear time invariant 
systems is dev~loped. Crucial in the present discussion are two new (\otions: the 
generalized · .. order" · and the .. adapted bases". These notion,s fonn generalizations of 
the classical concepts of order (or degree) and of proper bases, employed in the theory 
of linear systems. TI1e· resulting framework is then applied to obtain explicit conditions 
for system factorization, ru1d to study output feedback systems in which the feedback 
compensator is stable. 

1. INTRODUCTION 

In the present paper we develop a unified module theoretic framework for 
the investigation of linear time invariant . systems. "The main purpose is to 
show that 'the .theories of realization (Kalman (10]), of state feedback (Hautus 
and Heymann [ 6)). of causality (Hammer and Heymann [5]), of strict 
observa~ility (Hammer an_d Heymann [4]), and of stability (Hammer [2]). 
previously studied, can be regarded as different manifestations of a uniform 
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underlying algebraic framewo~k. It will be co~venient to start with u brief 
review of the point of view adopted in the abovementioned works. 

Let K be n field, and let E be a linear time invariant system, admitting 
inputs from the finite dh~ensioi1al K-linear space U und having its · outputs in 
the finite dimensional K-linear space Y. For the sake of intuitive convenie.nce, 
we assume that E is a discrete time system. Every input sequence to E can 
then be regarded as ·a formal Laurent series 1i=t=E:°-,

0
u,z-•~ where tis the 

time marker, t0 =#0 - oo, and u, EU for all t. The s~t of all such fonnal Laurent 
series (where t0 is allowed to range over all integers, µnd { u,) over all U) is 
denoted by AU. Thus. every input sequence to E is · an element in 'AU. 
Similarly, every output sequence from . E is· an element in AY, so that E 
induces a map/: AU-. AY. · · 

The employ~ent of the sets AU and AY is motivated by certain algebraic 
properties that they possess. In particular. it can be shown that the set AK (of 
fonnal Laurent series with coefficients in the base field K) is endowed with a 
field. structtµ"e under the operatio~1s of coefficientwise addition and sequence 
convolution as multiplication. l)nder similar operations. the set AU becomes a 
linear spac~ over the field AK. and moreover, · dim AK AU= dim KU. The 
importance of these observations stems from th~ fact that AK-linearity is 
closely reiated to tinie invariance [ 11, Chapter 10; 16). Indeed, when the map 
/:AU-. AY induced by E is AK-linear. then /zu = z/u for all u EAU, and 
the · commutativity of / with the shift operator implies the time invariance. 
Conversely. u~der a mild assumption on E [5), it is also true that, when E is 
time invariant. · the· map /: AU .-. AY induced by E is AK-linear. · Thus, 
AK-linear spaces form a natural algebraic framework for the study of linear 
time invariant systems. Throughout our discussion we shall limit ourselves and 
consider only AK-linear maps /:AU-;-+ AY, where U and Y are f~nite 
dimensional K-linear spaces. and we shall denote 

p: ~ dimK Y. 

A AK-linear map /: AU_. A Y can, of course. be represented as a matrix, 
relative to sp~cified bases u1 ••• · •• u,.. e AU and y 1 ••• · •• !Ip E AY. Of particu.l~r 
importance is the ·case when ·the elements .u1, ... ,u,,. belong ·to U and the 
elements y 1, •• .• , tJp belong to Y (where _U is regarded as a subs~t of AU. am~ l' 
is reg~ded as a subset of AY ). In this case the mahix representation off is 
called a lransf er matrix and it coincides with the cl,\ss.ical notion of transfer 
matrices. In our discussion below, whenever considering matrix representa­
tions. we shall always assume that they are t~ansfer matrices. For the sake of 
conciseness, we shall make no distinction between a map and its transfer 
matrix. 
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A A. K-linear· ~ap c~n also be regarded as an element in a certain space of 
Laurea~t series~ as foµows. Let U and Y be finite dimensional K-linear spaces. 
and let j: AU-. AY be a AK-linear map. As is well ~nown, the set of all 

· K-linear maps U-. Y ·lonns a K-Unear · space. which we denot~ by L. 
Similarly. the set of all AK-linear maps AU-+ AY fom,s a AK-linear space. 
which we denote by e. The point' is.' that e can be identified with the 
AK-linear space of Laurent series AL. as follows [6}. With each element 
T = E~z-• EAL, ~e associate a AK-linear map Ir: J\U-+ Ar, which maps 
an element ti== E·~,.z-• e ·Au into . 

Conversely, let /:AU-+ AY be a AK-linear map, and define the K-linear 
maps 

( canonical injection) • 

. Then. we associate ~ithje e the element~= ET,z-• E ~L. \~here T, = p,fiu 
for all t. It can be ·readily seen that Tfi := T and that fri== f. The element 
Ti E AL ~s called the transfer function off (and it is to be .distinguished from 
the transfer matrix defined above). 

We review now .a few facts regarding the structure of AK-linear spaces. 
Let S Qe a K-linear space ~ The set AS con~ains. as subsets, the set n ... S of all 
(polynomial) elements of the form E~-,c,9,z-', t0 ~ 0, and the set Sl~ S of all 
(power series) elements of the form E~ 0s,z-•. In particular. it is well known . 
that th~ sets n + K and n- K form principal ideal domains under the opera­
tio~s ·defined in AK. The sets ll ~ S and g- S are then n + K- arid n- K-modules. 
respectively. and· rank O.,: D + .S - rank 0 -" n-S = dim,: S. · 
. A AK-linear map f: Alf~ AY is· polynomial if it can be · restricted to the 

set of polynomials, namely. if / ( n + U] c ·$1 + Y. Equivalently, / is polynomial 
if and only if all the ~ntries in its transfer matrix are in Sl + K . .\ A K-lin~ar 
map is called rational if there exists a nonzero polynomial tJ, E n- K such that 
"1/is a 'polynomial map . Analogously, a AK-linear map/: AU__. .\Y is c-ausar 

. (respectively, strictly causal) if / (Sl- U] cg- Y (respectively, j [Sl- U) C 

z- 1 n- Y ). Equivalently,/ is causal (respectively. strictly causal) if and only if 
all entries in its transfer matrix belong ·to .n-K (respectiyely • .:- •g- K). A 
AK-linear map which is both strictly ca\,lSal and rational is called a linear ijo 
·(input/output) map. Finally. a AK-linear map i: AU--. AU is bicau.sal if it is 
causal and has a causal inverse. 
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2. RATIONALITY AND STABILITY: GENERAL CONSIDERATIONS 

Let S be a finite dimensional K-linear space. An element s E J\S is called 
n + K-rational (or sometimes simply rational) if there exists a nonzero poly­
nomial "1 e n + K ~uch that 1/,.s e n + S. The set of O + K-rationals ~n J\S is 
denoted Q0 .KS. For an elemen~ s E Q0 .KS, the set of polynomials \/J e f!+ K 
for which f s E n + S is easily seen to be an ideal in O + K. Since O + K is a 
principal ideal domain, this ideal is· generated by n monic polynomial If,• 
which we call the least denominator of s. The· zeros of 1/,

1 
are called the poles 

of s. (In case K = R, the field of real numbers, it is customary to consider not 
only poles in R but also in C, the field of complex numbers). The present · 
definition of n + K-rationality applies, in particular, also to transfer f nnctions 
of AK-linear maps, and we call a AK-linear map/: AU-+ AY o+ K-rational 
(~r, simply, rational) if its transfer function Tj EAL is. This definition is 
clearly consistent with the definition of rational AK-linear maps given in 
Section 1. 

We tum now to the concept of stability. If UJ) is a set of polynomials. ·we 
say that an n + K-rational map is GD-stable if its least denominator is in UJ). In 
order to ensure that the set of GD-stnble m.ips has convenient mathematical 
properties, a number of restrictions on the set GD are required [ 13]. 

DEFINITION 2.1. A set GD of (manic) polynomials over K is called a 
denominator set if it satisfies the following conditions: 

(i) Gj) is multiplicatively closed, i.e., p E GD, q e 6D imply p · q E GD. 
(ii) The unit polynomial 1 belongs to GD, but the zero polynomiai ()oes not. 
(iii) £ii) contains at least one polynomial of degree_ one, i.e.; there exists 

a e K such that z - a e GD. 
(iv) GD is saturated, i.e., if p E GD and q is a monic divisor of p, then q e GD. 

Conditions (i) and (ii) say that 6D is a multiplicative set (see e.g., (171). so 
that one can define the set n~K as these~ of fractions· p/q where p E ~+ K · 
and q E GD. Conditions (iii) and (iv) are motivated by considerations that are 
clJ.scussed shortly. We need the following (see also [2]). 

DEFINITION 2.2.. Let GD be a denominator set and S a K-linear space. 
Then an element s e Q0 + xS is called stable (or, explicitly, 6D-stable) if there 
exists p e GD such that ps E n + S. . 

A AK-linear map/: AU-. AY is called ifo (input/output) stable (in the 
sense of 6t)) if its transfer function Tie AL is GD-stable. · 

We denote . by nlii'>S the set of all ®-stable elements in AS. 
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The above definition of stability is a generalization to arbitrary fields of 
the usual concept of stability in system theory defined in an algebraic 
framework. For example. in case K = R. the field of real numbers, we let C -
be a prescribed subset of the complex plane satisfying C - n R :;,t: 0. and let ~ 
be defined by · · 

(2.3} 

Typical selections of C-:-are c- = {z e C: lzl < l} in the discrete time case. 
and c- = ·{z EC: Rez < 0) in the continuous time case. The .set u] defined 
by (2.3) satisfies conditions (i)-(iv) of Definition 2.1. In particular, condition 
(iin corresponds to C - n R. ~ 0. The following statement can be readily 
verified. 

PROPO~tTION 2.4. Let /: AU_. AY be a AK-linear map. Then / is ijo 
stable (in the sense of GD) if and only if /[Sl,P] c !l"i>Y. 

The set !l<i'K is easily seen. by direct co~1putation. to be a subring (with 
identity) of° the rational field Q0 • K ( = Qsr KK). Actually, the following is true 
(see. e.g., Hammer [2], and Hautus and Son~ag (9]). · 

· Pnoros1T10N 2.5. The ring Dlii)K ~s a principal iclec,l domain. 

Evidently, the set nlij)s is an O"i>K-module, and it can be expressed in 
explicit t~nns in the following form. Let s 1, ••• , s'" be any basis of the K-linear 
space S. Then 

so that also rankn~Kntij)s = dimKS. 
In many situations one is interested in the combination of causality and 

stability. The set D~S of all elements in AS that are both causal and Gi\-stable 
is given by the intersection · 

In particular, it can be readily seen that the set n~ K forms a ring under 
the operations of addition and multiplication as defined in AK. Moreover, the 
following stronger result was proved by Morse [13}. 
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PR0P0S1T10N 2.7. ·The ring St~K is ti principal ideal doma(n. 

Again. we obtain that U~S is an U~.K-moclule. and that. for any basis 
, 1 ..... s,,. of the K-linear space S. ex{>licit representation of O~S ts given by 

(2.8) U,iS- {s e ASls m: .E ·a,s,; al ..... a,,. e n~K). 
I -1 

Thus. we also .have that rankn~K n~s = dimi:'s. 
Summarizing our discussion up to this point. we have encount~red the 

rings n+ K. o-K. O"i)K, and S't~K. all of which fonn ·principal ideal domains 
under the operntions of addition and multiplication defined in AK. All of 
these rings play fundamental roles jn the theory of linear time invariant 
systems. encompassing the aspects of realization, causality, and stability. As it 
turns out. from the algebraic point of view, the dominant propeaty of these 
notably different rings happens to be the property they have in common, 
namely, the principal ideal domain property. It is therefore convenient to 
disregard all their other properties, and to concentrate on the study of 
principal ideal domains contained in AK. This is, b;isically, the ma.in theme of 
our present discussion. 

Let 12K ~-AK be a principal ideal domain (properly contained as a 
subring in AK), and let S be a finite dimensional K-linear space. The 
AK-linear space AS is then also an 12K-mo<lule. Motivated by (2.6) and (2.8), 
we define ns to be the 12K-submodulc of AS generated by S, i.e., if s11 • • ·.,s

111 

is a basis for S, then 

(2.9) OS: - {s e AS!s- E a,.t,. "• e ~K. i = 1 •. ; .• m). ,-1 . 

·We shall make use of the following notation: 

(2.10) 
inK: ns- AS: s~ s 

"n.:: AS - AS/12S - . : f0 KS 

(natural i.njection) I 

(canonical · projection). 

We extend now our tenninology to~ the principal ideal .domain UK. An 
clement .t e AS is culled nn !2K-elemeut if s E 12S. Thus, a A K-lhaeur map 
i: AU-. AY is an OK-map in case its transfer function is an OK-element of 
AL./ is called f1.K-unimodular if it is nn invertible f2K-map and its inverse is 
als9 ,m OK-map. Clcurly. u A K-lincar n·uip i: AU-. AY is an OK-n1u1> if and 
only if all the entries in its transfer matli'< belong to f2K. An clement tJ' e AS is 
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called OK-rational if there exists a nonzero element ti, e !!K such that 
tl,s e OS. The set ·of S2K-ratiimals in AS is denoted Q0 ,:S. Just as in the case of 
Sl + K, the definition -of OK-rationality also applies to transfer functions .of 
i\K-linear maps, and -we call ·a ·.l\K-linear map OK-rational if its transfer 
function is. Thus, a AK-linear map j: AU-+ AY is OK-mtionaJ iI and ·only if 

. there exists a nonzero element "1 e OK such. that ti, j is an OK-map. 
Intuitively. an SlK-mup is a AK-linear map that can be ... restricted to O," 

as ·follows (the proof is by direct computation):· 

. P.n0Pos1T10N 2.1.1. · Let/: AU-+ AY be a AK-linear map. Then./ is an 
OK-map if and only if i[SlU) c OY.· · 

In si.~ilar' tenns ··we can also c~aractetjze SlK-unimodular maps. 

PROPOSITION 2.12. .-\ 'AK-linear map f: AU-+ 1.\U is OK-unimodular if 
· and only if i[OU] :::a OU (or~ equivalently.·;/ and only if ker,:;0 ,:i= SlU). 

~. THE ORDER AND ADAPTED BASES 

In the present sectio~ we derive a finitary characterization of OK-maps. 
The underlyi~g idea is to generalize the theory of proper bases. which plays a 
fundamental ro_le in the finitary · characterization of causal maps. We start with 
a· brief review Qf the classical . notions of order' and proper bases. Let 
s = Es,z-• E AS be an element. The order of sis defined by 

(3.1) d {
min,(s,*O} 

or .s: =-
oo 

if s =1= 0, 

if s = 0. 

. The leading coefficient s· of ·S is defined as s: = s0 n1, if s * 0, and s: =-0 if 
s = 0. A set of elements_'s1 .... ,sn e AS is properly indepenclent if the leading 
coefficients .fi,.;. ,.fn are K-linearly independent [ 14.15. l]. A basis consisting 
of properly independent elements is called ·a proper basis. The following is an 
equivalent characterization of proper bas~s [1.5). · 

Pn0POS1T10N·3.2. Let s 1, ... ,sn e AS be a set of nonzero elements. 11,en 
· s1, ... ,s,. are properly independent if and only if the follo1L'ing laolcls: F~r 
every set a 1, ... ,an E AK, 

ord( E a1s,) .= min (or<l a;s;}. 
i•l 1-1, ... ,n 
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The importance of proper bases is related to the fact that they allow a 
finit~ characterization of causality, as f<;>llows [15,4}: 

THEOREM 3.3. Let u 1, ••• , u'" be a proper basis of the AK-linear space 
AU, ancl let/: AU .... AY be a AK-l,inear map. 771en, / is causal if and only ff 
ord ft,,~ ord u, for all i =- 1, ... ,,n: 

We tum now to a generalization of these concepts to general principal 
ideal domains included in AK, starti~g with the generalization of the concept 
of order. As before, we let DK~ AK be a principal ideal domain properly 
contained ·as a subring in AK, and we let QnK denote the field of quotients 
generated by OK. · 

For an element s E AS we define the OK-orcler of s, denoted ordnK s, as 
the set of all elements a e QnK for which as e OS. that is, 

(3.4} 

Whenever the ·underlying ring OK is fixed, we shall use the simpler notation 
ord S for ordnK s. Clearly. when S - o. we have that ordnK S = Q,21.~· that is. 
the whole field of quotients. Further, we have the following 

Pa0P0S1T10N 3.5. Lets e AS be any element. TI1en ord s * 0 if and only 
Ifs e Q0KS. 

·Proof. If ord s =-= 0 there is an element O * y = p/q e ord s (with p, q E · 

OK) such that (p/q)s E OS, whence ps E S1S and s is OK-rational. Con­
versely, if s e Qn~S. there exists O * p e OK such that ps e· SlS, whence 
p E ord s and ord s • 0. • 

It is easy to see that the set ord 0x sis actually an S"2K-1nodule (contained 
In QoK ). In fact. we have 

Pn0P0S1T1QN 3.6. Ifs e AS is nonzero,. tl1f!n ord0Ks is a cyclic OK­
module. 

Proof. We shall prove only the cyclicity, i.e., that ord sis generated by a 
single element. Let s ::1= 0, and ·consider the ·Set q(s): == {asla E ord s} c OS. 
Obviously q(s) is an QK-moclule and, being a . submodule of a finitely 
~enerated module over a P.I.D.. it is fir1itely generated. Thus. there are 
:lements 0 11 ••• ,om e ord s such that o 1s, ... • ams generate q(s). ConsC..: 
1uently, a 1 ••• norn generate ord s. Let ti, E OK be a common denommator of 
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a 1, ••• ,am (i.e., a,.J,e'1K, i-1, ... ,m), and let . (t/,-l) (QK) denote the 
(cyclic) UK-module generated ~y i1,-1• Then, clearly, a 1 -(a,t/,)\/,- 1 e 
('1,- 1)['2KJ~ i=-1, ..•• m. whence ordsc('1,- 1)['2KJ, implying that ord.s is 
also cyclic as claimed. • 

Le~ .o • s e AS be any element, and let a e Q0~ be any generator of ord s 
(possibly ze~o). If a' e QaK is an.other generator of ord s, then, by Proposition 
3.6, it is an associate of a with respe.ct to '2K, i.e., a'= µa where µ e QK is a 
·unit (i.e., an invertible). It follows that a is uniquely defined modul~ units in 
OK. and it will sometimes be convenient to identify ord s with one of its 
generators. 

We consider next several 

EXAMPLES 3.7. 

(i) OK is the ring n-K of causal elements.. In. this case we have that 
Q0 -K - AK, since. for every O • a E AK, at least one of a, a- 1 is in n-K. 
Thus. every elem~nt s e AS is n-K-rational. Now. lets be a nonzero element 
in AS. In view of Propositions 3.5 and 3.6, there is a nonzero element a e AK 
such that ord OKs == a[ n-K ). Since a * 0, there are a un~t µ of n- K and an 
intege~ k such that a= µ.z-". Hence, ord 0 -xs - z-.A:(o-K], ancl it can be 
feadily seen that k ..,. ord s •. where ord s is the order as defined in (3.1 ). Thus. 
ord 0 - K essentially coincides with the classical notion of order (3.1). 

(ii) OK is the ring of polynomials O + K. In this case Qsr ,c is the usual 
field of rationals. Fqr an elements E AS, ord 0 • x s * 0 if and only ifs e Q1r KS• 
i.e., if and only if s is rational (in the classical sense). To compute the order 
explicitly. let O • s E Q0 +xS be given as s == (s 1 ••• " •• sm) with s1 - p,lq •• 
where p1• q1 e S-a+ K are coprime for all i = l, ••• , m. Then ord O• Ks is gener­
ated by the rational el~ment q/p. ~here q and pare the monic polynomials 
q - lcm(qt•···•qne) and p = gcd(p 1 .... ,p,,.) (1cm and gcd denoting, respec­
tively. the le~t common multiple and the greatest common divisor). To see 
this. write p, =-pp, and q =-q;li, for polynomials ii,. ii,, i = 1, •... ,m. Then 

!ls~ (9.s,,., .• 9.sm) 
p p . p 

- (ijdj1t••.• ,lim'Pm) E g+ S, 

so that (q/p)[~+K]cord 0+,cs, Conversely, let r/t, where r,teO"T"K are 
. coprime, be any element in ord 0 .Ks. Then for each l = l, ... ,m. 



330 JACOB HAMMER AND MICHAEL HEYMANN· 

Thus, q1 is a divisor of r for each i, and -since q is the 1cm of the q1 ·s, it follows 
that q is a divisor of r as well, that is, r - qi for some re n + K. Simili\rly, tis a 
divisor. of each of the p;'s and hence also of p, so that p :::a Ip for some 
;;en+ K. Thus, 

. r qr qip q ( · __ ) 
- = - :a --=-· =- - rp • 
t t tp p .· 

so that r/t e (q/p )[~ + K), whence ordn• K. s = (q/p )[U + K]. 
(iii) OK is the ring 0~ K of causal cmd stable elements.. The quotient 

fiel_d .Q0 ~K. again coincides with the usual field of rationals Q0 • K• and an 
element s E AS has nonzero D~ K-order if and only if s e Q0 • K. S. To obtain 
the order, let sz=(s 1, ... ,srn)EQ 0 .KS be a nonzero element, and wlite each 
entry s,, i == l, ... , m, as s1 == p1r1/q 1, \;\'here lj, q1 e 6D are coprime (with 
respect to O ~ K ), and where (0 ""' ) p, E Sl + K is copri1~e with every element 
of 6D. Then it can be verified by direct computation that ord n~K s is generated 
by an element q / rp E Qrr K · as follows: p = gcd ( p 1, ••• , p111 ), and q and r are 
any coprime elements of c,D such .that ordn~K(q/pr)= - ord 0 -Ks. 

We proceed now with our cliscussion of the order. starting with the 
following property, which can be readily verified. 

PR0P0S1T10N 3.8. Lets E AS be an element. Thens E OS if and only if 
OK c ord 0 Ks. 

We consider next the behavior of the order under several operations. First 
we note that, for any pair s E Q0K S and O :ai: a E QnK, we have ord as = 
a-• (ord s ). Hence, if ord s - y[OK], then ord as= (a- 1y )[OK]. In particu­
lar, if a E OK, then qrcl's cord as. Further, let Yp .•.• y,. E Q0 K be a set of 
elements, and let f E OK be a nonzero element such that "'Y, e OK for all 
I• 1, .... n. Let a be the least comrh~n multiple (in OK) of "'y1, .... ./Jy,.. 
Then, we call y: - a./ ./J a least common OK-multiple of y1, ••• , y,.. Clearly the 
intersection y1(ilK.)n · · · n y11 (0K] - y[OK]. Letting s 1, ... ,s,. e Q0 KS _be a 
set of nonzero elements with orders ord si = y,[OK], l = l, ... ,n, we again 
have that ord s 1 n · · ·· nord s,. ::a y[OK], where y is the least common OK­
multiple of y1 .... ·,Yn• Finally, considering the order of the sum s 1 + s2 

+ · · · .+ ""' it is eas~ to see that · .. 

(3.9) . ord s 1 n · · · n ord s" c orcl ( s 1 + · · · + s,. ) . 

A set of elements s 1, ... ,s,. E AS ls OK-ordered (or, simply, ordered) if 
ord s 1 C • • • C ord s,.. 
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We tum ·now to characterization of when a AK-linear map f .AU _. .\r is 
.an SlK-map. Recall that/ is an OK-map if and only if /[OU) c SlY, and let 
0 ~ u E Q0dl be any element. Then ord u = y(SlK] for some y E Q0 K and 
yu E ·nu~ If l is an OK-map, then /( yu) E SlY, so that SlK C ord /( yu) (see 
Proposition 3.8)~ or,. equivalently, · OK cord y /( u) = y- 1 ord /( u ). Thus ,ve 
conclude that y[OK) c ord/(u), and a necessary condition f~r / to be an_ 
SlK-map is that ord u cord/( u ). This · condition is actually also sufficient, 
and we have the fallowing. . 

THEOREM 3.~0. ~t /:AU~ AY be a AK-linear map. Then j is· an 
OK-map if and only if oi:d u ·c ord /( u) for each u E; Q0 1.: U. 

Proof: The necessity has been seen above. TI1e sufficiency· ·is seen as 
follows. If/ is not an OK-map, there is an element u e QC satisfying the 
condition . that /(u) E.l: OY. Then OK cord u, but OK <t. ord /(-u), so that 
ord u <t.. Ord /( u ), concluding the proof. • 

The condition of Theorem 3.10 is, of course, not eas.ily tested directly, and 
we . would like to find a finite . "test set" of elements in Qf!K LJ which is 
sufficient for verification that a AK-linear map is an nK-map. That a basis for 
Q0 ,..: U may 11ot be appropriate for this purpose is seen in the following simple 
example. 

Ex.utPLE 3.11. · Let ll°K = o-K, a~d let Y = U = K 2• Take as basis for 
Q0 KK 2 the elements 

. and de£ine/: AK2 --. AK 2 by 

/(u 1)- u1. + U2, 

/(u2) = "2· 

.ObviO\~ly, n-K-== ordsrKu 1 - ordcrKl<u 1) = order Ku!=- ord 0 -Kl(u 2) •. 

Thus, f satisfies the condition of Theorem 3.10 for the basis u 1, u2 , yet it is 
not an n-K-map (that is, not caus~): since/(u 1 - u2 )= u 1 and since 

u -u .... ... ... 
( 

.,.-1 - .,.-21 
l 2 0 I 
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we have 

· Let us explore now the cause of difficulty encountered in . the above 
example . . If·$1, ••• ,sn E Q0KS is a given set of elements and a 1, ••• ,an E QnK is 
any set of scalars, then by (3.9), 

n n 

n orda;S1 Cord L a,s,. 
,-1 · ,-1 

But the above inclusion, in general, need not hold with equality ( even when 
the s, are Qarlinearly independent). This order "deficiency" also occurs in 
the example, and therefore the basis selected there failed as a test set for 
causality. Indeed, we have there 

2 

n ordo-Ku, =-o-K ~ ordo-K(u1 - U
0

2) = .dr K . 
• -1 

Thus, we are motivated to introduce the following 

DEFINITION 3.12. A set of nonzero elements s1, ••• ,sn E Q0KS is called 
DK-adapted if for every set of scalars a 1, ••• ,an E QoK the condition 

n n 

(3.13) . n or<l a;s, =- ord E a 1s 1 ·~l •-1 
holds. A basis of ilK-adapted elements s 1,. •• ,sn, of' Q0 KS is \!alled an 
DK-adapted basis . 

. . It is easily verified that In Definition 3.12 we could replace Q0 K by _OK. 
i.e., s1, ••• ,sn is OK-adapted if arul only if (3.13) houls for eoenJ set a 1, ... , a" 
ef2K. . 

It is important to note that Definition 3.12 reduces to Proposition 3.2 in 
the particular case when OK is the ri~g of power series o-K [see _Example 
3.7(1)]. Thus, Definition 3.12 fonns a nah:lral generalization of the notion of 
proper bases to the case of general principal ideal domains, in a framework in 
which the classical notion of order (3.1) is replaced by. ordoK· We start our 
investigation of adapted sets with the follo,~ng 

THEOREM 3.14. An OK-adapted set of nonzero elements s 1 •••• ,$
11 

e QuKS 
is AK-linearly ·independent. 
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Proof. Asswne the set sl•···•'n . e Q0,cS is AK-linearly dependent. Then, 
since s1 ••••• sn are OK-rational; they are also Q,uc·linearly dependent. and 

· there are elements al•··· ,an e Q0x, not all zero, such that E~_1a 1s; - 0. If 
the set is OK-adapted. then (3.13) holds, and we have that 

n 

n ord a,s ... ordO = Q0x: ,-1 . 
Thus, it follows that ord ais, = QoK• i =·I, ... , n, implying that a,si = 0 for all 
j = 1, ... ,n, a contradiction .. since we assumed that all the s,·s are nonzero. • 

. Let sl•···,sn e AS be a set of ele~ents, and let A[s 1, ... ,snJ denote the 
AK-line~r space spanned by s1, ••• ,sn. We then have the following char­
acterization of OK-adapte~ sets. 

THEOREM 3.15. Consider a set of nonzero elements s 1, ••• , s n e Q0K S 
with ord s1 = yi[QK], i ~ 1, ... ,n. Then {s1, ... ,sn} is an OK-adapted set if 
and only i/{Y1S1~···· YnSnlforms a basis for the OK-module A[s1, .. .,sn]nns. 

Proof. "'Only if": First note that from the dtfinition of order. the 
OK-module a 0 : ~ 0( y1s1·, ••• , Yn.tnJ, generated by {y 1s1 .... , Yn.fn}• is con­
tained in ll: = A[s1, •• .,sn]n0S. To see that the converse inclusion .i c l 0 
also holds, let s a E~_ 1a,s, ( e DS) be any element of A. If s1, ... ,s" is an 
'2K-adapted set, then, by (3.13), ord s = n ~-t ord a,s,. and ·by Proposition 
3.8 OK cords cord a • .s,, i = 1, ... ,n. Thus. there are elements /3, e f!K, 
i == 1, ...• ~. such that a,=- /J,Yt and we haves·= E~_1/J1y1s, e l:,.0 as claimed. 

"If'': . Assume that the set (y1r1, •••• YnSn} fonns a basis for A, and consider 
any elements=- Ef •. aa,s, where a,, ... ,an e Qo,, are not all zero. ·The proof 
will be complete upon showing that ord S == n r-1 ord a,s,. and since the 
inc~usion n f-l ord a,s, cords is obvious, it remains only to show that the 
converse 'inclusion holds. _To prove the l~tter, let ord s = y(OKJ. Then 1s e d 
and, by assumption, there are elements P1, ••• ,/Jn eJ2K such that 7$ 
( = E~-lya 1s1) = Ef_1/31y1s,. By the uniqueness of the representation it 
follows that ya, :a: P1Y,, i :o:: l, ... ,n, and we have that ya,s, = /J,(y,s,)E ns for 
i = 1, ... , n. HetlCe y E () f-1 ord a,s,, concluding the p~oof. • 

From the above theorem wo directly obtain the following characterizatiqn 
of OK-adapted bases. 

C01'0LLAI\Y 3.16. Assume the set s ••...• s,,. E QaKS is a basis for AS 
wit/a ord s1 - y1(DK], f - 1, ... ,rn. Then the set {sl•· . .'.sm} is OK-aclapte4 if 
and only if (y 1s1, ••• ,yms,,J generate& OS. 
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. . 
One of. the .fundamental proper .ties of order preserving maps is that they 

transform adapted ·sets into adapted sets. as follows. 

Pnopos1T10N 3.20. Let/: AU-. AY be a AK-linear map. and let 111~~ •• , 

u,. e Q0 ,cU be an OK-adapted set. If/ is order preseroing. then /(u 1 ) ••••• 

/( un) e AY is also an OK-adapted set. 

Proof. We need to . show that for . every set ·a 1, •••• ~" e Q0 11:, 

() f _ 1 ord aJ(u,) =-=•ordE~_1a,/(u,). Indeed. 

n n 

n orda./(u,)= {) a,- 1ord/(u,) 
i -1 . 1-1 

by the order preserving property 

n . 

== n a,-•ordu, ,,-1 
n 

- n ord a,u, ,-1 
since the u, ·s are SlK-adapted 

by the order preserving property 

· = Qrd i( .t a,u,) 
, -1 

n. 

= ord L a,l( u, ). • 
i•l 

We can now state a full characterization of order preserving maps. 

THEOREM 3.21. Let/: AU-+ AY be a AK-linear map. and let 111 ••••• 11,,
1 

e Q0 11:U be an OK-t1dllptctl basis for AU. Then i is OK-order presen:ing. i_fmul 
only if (i) /u 1 •••• Ju,,. are r2K-acfoptecl, and (ii) ord u, - ord /ui Ji.lr t1tl 
I - 1 • ••• • r,a, 
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Ex.u.1PLE 3.17. Corollary 3.16 provides a particularly simple wuy to 
detennine whether a basis s 1, ••• ,s~. of the AK-line~r space AS is OK-adapted. 
Indeed, {y1s 1, ••• ,yms,,.} generate OS if and only if the matrix [y1s 1, ••• . ,y111s 111] 

is !!K-unimodular. Thus, the main clause of the corollary can be .restated to 
read: Tlae basis s 1, ••• ,s"' of AS is !!K-adaptecl if mul only if det(s 1, ••• ,s'") == 
y11y2 1 ···y,; 1µ, whereµ is a unit in !!K. As an illustration of this simple 
criterion, we shQw that the columns 

S3 = ( ~ ) 
z 3 + 1 

form an (unordered) n+K-adapted basis for AK 3
• Indeed. we have ord 0 +Ks 1 

= (z~ 1 )[SP· K), ord 0 • K s2 = ((z 2 + 1)- 1 )[O + K], and ord 0 ." s3 = ((z 3 + 
l)- 1)[0+Kj, .whence y1-

1y21y3-
1 =-z(z 2 +l)(z 3 +1), which is equal: to 

det[s 1,·S~, S3]. If however, Sl (say) is replaced by si = (2z, z 3, .:
4 )°', then the 

resulting set will no longer be o+ K-adapted, since det[si, S2, S3]:::; (z_3 + 
l)(z 2 + l)(z 3 + 2z ). 

We arrive no~ at a finitary characterization of OK-maps, which is in 
complete analogy to Theorem 3.3. 

THEOREM 3.18. Let/: AU_. AY be a AK-linear map, and assume that 
u~ •... , u,,. is an OK-adapted basis for AU. Then/ is .an OK-map.if and only if 
ord u, cord /(u 1) for ~ll i = 1, ... ,m. 

Proof. By Theorem 3.10 the condition is clearly necessary. To see 
sufficiency, nsswne that ord u, - y1(0K ). i = l, ... , m. By Corollary 3.16 the 
set { Yl u 1, ••• , Ymuna) generates OU. But, since ord u, C ord /( u,) for all i -
l, •.. ,m, it follows that y.f(u 1) = /('y,u 1) e OY, whence /[OU] c OY and/ is 
an !!K-map. · • 

Consider an !!K-uQlmodular map f: AU - AU.: Clearly, for every pair 
u, o ~ AU, we have (see Theorem 3.10) that . ord u cord fu and ord ·v c 
ord f- 10. Substituting t> .. iu, ,ve obtain that also ord lu cord u, so that 
ord f u ~ ord u for every u E AU. Thus. an OK-unimo<lular map preserves the 
GK-order. We now generalize this notion. 

D£F1N1T10N 3.19. A AK-linear map j: AU-. AY is call.ed OK-order 
preserving (or, simply, orcler preseroing) if for each u E Qru;t', ord u = · 

ord j(u). 
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Prqof. The necessity of conditions (i) and (ii) follows directly from 
Proposition .3.20 and Definition 3.19, respectively. We now prove the .. if'~ 
direction. Assume that conditions (i) and .(ii) hold, and let u = I:r~,a1uj, 
where ·a 1, ... ,am E QoK• be any element in Q,u:U, Then since the u .. s are 
OK-adapted,_we have by (3.13) that ord u ( = ordI:f'_1a,u,) = n ~ 1orda,u,. 
and it follows that . 

,n 

ord u = n ord a,u, ,-1 
,n 

::a n ord a,lu, [since ord /u, :a ord u,] 

whence/ is order preserving. 

•-1 
== ord{ E aJu,) [by (i)] 

\' -1 

== ord/( f a,u,) ,-1 
- ord /(u), 

• 
We can now prove the converse direction of our previous observation that 

GK-unimodular maps are order _preserving. 

ConoLI.A.RY · 3.22. Let /: AU _-+ AU be u AK-linear mt1p. Tlaen / is 
'2K-unimodular if and only if it i.s DK-order preserving. · 

Proof. The "only if 0 direction was considered above. Conversely, if/ is 
order preserving then lt is clearly Injective, and hence is a AK-linear 
isomorphism AU ;; AU, so that J- 1 exists. By assumptJori, ord / u = ord u .for 
all u e A[!. Letting v: - Ju, we obtain ord o ~ ora/- 1u for all o e AU. Thus. 
by Theorem 3.10, both of iand j- 1 are OK-maps, and /is OK-unir:noc!ui_ar. • 

4. BOUNDED OK-MODULES AND. THE EXISTENCE OF ADAPTED 
BASES 

Before considering the existence of OK-adapted bases. it is .helpful to 
study a particular type of OK-submodules of AS. Let Ac AS be an S2K-mo<l-



FACTORIZATION OF LINEAR SYSTEMS 337 

ule. We say that fl is f2K-rational if it consists exclusively of SlK-rational 
elements. An OK-module A _c AS is· OK-bounded if there exists a nonz~ro 
element y ~ QgK such that y[A] C us (i~e .• ys Ens for every s EA). Let 
Ac AS be a bollllded· SlK-module. We define the order of ~. denoted 
ord 0 K A, as the class of all elements ye Qox satisfying y[A] c SlS. It is easily 
seen that ordnK A = n, 6 6 ord 0 K s. If A is a nonzero submodule and O ~ s e l 
is any element, then ord A·C ord s~·so that from the fact that nK is a principal 
ideal domain and ord s is a cyclic module .(Proposition 3.6) it follows that also 
ord A is cyclic and rank 0 K A =-1. Thus, if A * 0 there ·is an element II, e Q0K 

such that ordo.KA = 11,[0K]. Otherwise. if A= o. we have the ordoKA == QoK· 
Clearly, every bounded S1K-module is necessarily f2K-rational as well. The 

converse. however. is not true in general, and a rational OK-module may be 
not bounded. For example when OK is the ring of power series, then the 
space AS is ·a rational OK-module, but it is evidently not boW1ded. Neverthe­
less, the following is true. 

LEMMA 4.1. Le_t Ac AS be a rational OK-submodule. Then A i.s botmded 
if and only if A has finite rank (i.e., is finitely generated), in which case 
rank A ~ dim S. · 

Proof. ..Only if': "Let 4 be bounded, and let ord A= \/,[!lK] with 
0 * II, E QoK· Then \/,a c OS, so that. in view _of the fact that OK is a principal 
ideal domain. rank ~A ~ rank OS =-dim S. But, clear1y, rank A :Z:. rank t/,~, con­
cluding the proof of the .. only if" part . 

.. If": Asswne fl has finite rank, and let d 1 •••• , d n e ~ with ord d, - ( Y; )0 1.: 

be a basis. Then, since {d.} are rational, y1 • 0 for all i-1, ... ,n. and, by 
definition, for every d E 6 there are elements "1· ... •"n E SlK such that 
d - Ef-· 1a 1 cl 1• But then 

n 

o·~d d 11: ord I: a, d, 
•-1 

n 

::> n ord a, d, .,-1 
(since, foa: every ai E OK, ordd, - a1[orda,d,] cord ai _d,, i -1, ...• n). 

n . 

::> () ordd 1 = ·: 1/,[0K] 
i -1 · 

where tJ, Is the least.common OK-multiple of y1 ••••• Yn·, 
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. Further. since y1 qi: 0 for all i =I," ..... n. we have that l/, =-= O. so that. since 
by con~truction l/,(A] c OS. the module u is bow1ded. TI1at ·rank a~ dim S 
follows from rank d =- rank ,i,[A]. since ll,(-.1] c OS. · • 

In (5. TI~eorem 6.11] it was shown (in our present tenninology) that every 
bounded a-K-module has an n-K-adapted basis. Actually. this result is just a 
manifestation of the following general statement. · 

THEOREM 4.2. Let A c AS be a nonzero bounded OK-module. Then: 

(i) A has an ordered OK-adapted basis d 1, •• ~,ci,. 
(ii) If d·: ..... £!: Is a~ay other ordered f!K-acfoptecl basis of A, then 

ord d: - ord di; i = 1, .... r. 
Before proving Theorem 4.2, it will be convenient to recall the Smith 

canonical form theorem (see. e.g., [ 12)). 

THEOREM 4.3. Let T be an m X n QK-matrix. Then there are OK-uni­
modular matrices ML and 1\,IR of dimensions m x m and n X n, ·respectively, 
and elements 81, ... ~ 8, e OK, uniquely defined up to multiples of unit$ of 
OK, wliere r ~ min( m, n). and 61 + 1 divides 8i for all i = 1, ...• r - l, such that 

(4.4) 

where Dis them x n matrix given by D == diag(8 1 •••• ,8,. 0, ... ,0). 

The elements Bl• ... ,B, in Theorem 4.3 are called the inoariant factors 
of T. 

Proof of 111eorem 4.2: Assume that d C AS with dim S = m is a bounded 
OK-module with ord A~ ll,[OKJ,-and, in view of Lemma 4.1. let cl 1, ••• ,cl, e A 
be a · hasis for A. Then 1/Jcl 1, ••• ,ll,d, Ens. and the m x r matrix ll,1': = 
(tJ,d1, ... ,tJ,d,) (where tJ,d, is viewed as a column vector) has Smith represen­
tation 

(4.5) 

where 

0 8, 

0 
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and the 81 E OK (with B,+.l dividing 81) are the invariant factors of .j,T. We 
note that. by definition of r. 81 * 0 for all i == 1 •... , r. Dividing both sides of 
(4.5) by ti, yields 

(4.6) 

where D0 is the Smitl&-:WcMillan fomi of D and is given by 

0 8,/1/1 - - . . - - ·-- - - -
0 

Let d01 denote the ith colwnn of D0• The columns d01 , ••• ,d 0 , E Q01i:S 
constitute an OK-adapted set, since for every set a 1, ••• ,a, E Q12K we have 
that 

, 
· d: -= E a, d01 = 

•-1 
8, 

a- • , .,,. 
0 

0 

and clearly ord d - () ~ - 1 ord( a, 8, / "') mt n r •• ord a I d Oi. Furthermore, since 
ML is ilK-unimodular, it _follows by Proposition. 3.20 that ~e columns of 
MLDo, given hy (8.11',)Mu,•••,(8,/'1,)ML, (where ML, is the ith column 
of Mt), are ilK-adapted as well: . 

Now, since MR is UK-unimodular, we have that .l • T(P.S] =­
MLD0M~[OS] == MLD0 [r2S]. s.o that the colmnns of MLDo form a basis of~. 
and. as we have just shown, this basis is OK-adapted: To show that this basis 
is also ordered, we note that, since the greatest ·common OK-divisor of all 
entries in ML, isl for all i-1, ~··•'• we have ord(B,/1/,)MLi =(tl,/8,)[P.KJ, 
i == I, ... , r .. Hence, since 81 ~ 1 divides 81 for all i == l, ... , r - 1. we obtain 
ord(8,/tl,)Mt., C: · • • c ord(&af .J,)Mu. Thus, the columns (B,/tl,).\1 1.,, 

(8,_ 1/"')ML,-l~ .... (8 1/11,)Mu fonn an ordered adapted basis of .l. This 
concludes our proof. 
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Let AC AS be a bounded DK-module, and let d 1, •••• cl, be an ordered 
adapted basis of A. We call the set ord d 1 c: ord d 2 c · · · c ord d, the order 
trace of A. In view of Theorem 4.2(ii). the order trace is uniquely detennined 
by A. It is also easy to see that ord /l =:=a. ord d 1• Letting D: = [ d 1, •••• d,) be th~ 
corresponding mat~. we can represent A as A=. D[OK'). In case rank A= 
dim KS, we say that the module A is full. 

THEOREM 4.7. Let A 1, A2 c AS be bounded _OK-~·ubmoclules given by 
A1 = D10S and A2 = A20S, .respectively. Then A2 c A1 if and only if there 
exists an OK-matrix R (i.e., with entries in DK) sucla that D2 = D 1R,. 

Proof. Elementary. • 
ConoLI...ARY 4.8. Let A1, A2 c AS be bounded°DK-submodules given by 

Af== D1DS and A2 ==: D20S. Assume A1 is full. and clefine R: = D11D2• 11,en 
A2 ~ A 1 if and only if R is an OK-matrix, with equality holcling if and only 'if 
R is DK-unimodular. · 

We tum now to the existence of DK-adapted bases for AK-linear spaces. 
A AK-linear subspace 0t c AS is called '1K-rational if it has a basis s 1 .... ,sk 
consisting of OK-rational vectors. 

THEOREM 4.9. Let dim S = m, and let 0t c AS be a nonzero OK-rational 
AK-linear subspace. Then (i) 0t has an DK-adapted bcisis, and (ii) evenJ 
OK-adapted subset s 1, ••• ,s 1 E 0t can be extended to an OK-adapted basis 
for~. · 

Proof. (i): Let s 1, ••• ,sk be an OK-rational basis for ~. and write 
R - [s 1, ••• ,s 1J (where the s/s are regarded as column vectors). The m X k 
GK-rational matrix R has a Smith-McMillan representation 

where ML and MR are OK-unimodular, aad where Dis the ·smith-McMillan 
form of R. Then 0t :a R(AKk] :a ML DMn(AKk] = ML D[AKk], and the 
columns of ML D constitute an OK-adapted basis for 0t (see proof of Theorem 
4.2). . 

· (ii): Let s 1, • •• ,s, E 0t constitute an '1K-aaapted set. We shall demonstrate 
a procedure for extending this set to an OK-adapted b,tc;is for 0t. First recall 
that the set s1,_ ••• ,s1 is AK-linearly independent (Theorem 3.14), ru1d hence 
can be extended to an OK-rational basis s 1, ••• • sk of 01. Let s1+ ''" •• ,sk be 
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such an extension. Define the matrices R: == [s1, ••• ,s,J and .R =lsi+a•·· .• s,J 
Now, let i'vf L be an SlK-unimodular matrix such that 

where 

D=( ~•) 
and D0 is a_square·(I X l) matrix (the existence of ML follows by the Hennite 
nonnal fQnn theorem; see e.g . . [12)). By Proposition 3.20, the columns of D0 
are still OK-adapted. Next, decompose the representation as 

R = [M• M2][Do] = M1 D 
L• _ . L Q L O• 

where Ml is m X l. Let y E Q0 K be a nonzero element such that y D; 1 is an 
UK-matrix, and let O ~ t/J· E n·~-1+ 1 ord s1 be any elelJlent, so that 1/,R is an 
OK-matrix. Define the· matrix if: = yt/,R.. Clearly, the columns of [ R, R) still 
fonn a basis for~- Now, upon ·defining R1 .= Mi 1 if. we obtain 

(4.10) [R,.R] = ML[D, R1
] 

~ [M' M2][ Do 
L• L Q 

R' l 
R~ • 

where 

R' = [ :J 
is a decomposition of R1 such that R~ ·is (m - l)x(k - l). In view of the 
nonsingularity of D0 and the fact that if== yt/,R and ,Jill is an OK-matrix, it 
follows that the matrix P: = D0 1R~ is an OK-matril. Now we can write 
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Further, let 
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be the Smith-McMilla1~ representation of R~. Conti~uing from (4.10), we then 
have 

(R, if]= [ML Ml)[Do O ][ I . pl 
. 0 R~ 0 I 

::a [Ma M2] [' Do 
L• L O ~] 

Now, the matrix [ ~ JR] is clearly OK-unimodular, so that the columns of 

the matrix 

also span ·~- Moreover, we claim that the colwnns of D form an OK-adapted 
set. Indeed, by construction, the colwnns of D0 form an OK-adapted set, and, 
since D is diagonal, its columns. also form an OK-adapted .set. This implies 

· [D O l · that the columns of the block diagonal matrix O 
.. form an OK.:adapted 

. 0 D 
set. But then, since the matrix [Mf, Mf McJ is OK-unimodular, it follows by 
Proposition 3.20 ·that the columns of D form an OK-adapted basis of ll. 
Finally, QOting that D ::a [R, Mi.ML D], we obtain that the cohunns of Mf ML D 
extend s 1, ••• ,s1 into an OK-adapted basis of 0t, concluding our proof. • 

. We are now in a position to give an algebraic characterization of the order 
trace. 

Pn0POS1T10N 4.11. Let ll, Ill c AS be nonzero and bounded OK-moclules 
of equt1l rank n. Then there exists an OK-uni modular map M: AS -+ AS sucla 
tlwt M(~] - /l1 if aud only if fl ancl ll1 haoe tlae same order tmces. 
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Proof. Assume fi_rst that an OK-unimodular map M exists such that 
M[A).= A1

• and .. le~ dt,···,dn · be an ordered OK-adapted basis for fl. Clearly 
then, the set d:: = M cl 1, ••• , d !: == Md n is a basis for A1

• Moreover. since .\I is 
order preserving, it follows by Proposition 3.20 that this basis is in fact 
ordered and OK-adapted. Thus, in view of Theorem 4.2, the order traces of .1 
and tJ.1 are the same. · . 

Conversely, _let A. and At have the same order traces, and let d , •... • d,. and 
d: •.... , d ! be ordered O~-adapted bases for t,. and /l1

, respectively. Extend, as 
in Theorem 4.9. these bases of fl and ti . to OK-adapted bases for AS: 
d 1, ... ,dn• cln+l•'"•'t, and d: .... ,d!. d!+ 1, ... ,d!,. respectively. Let Yi and 
y/. respectively. be generators of ord d I and ord d f, i = n + l, ... , m. and 
define the AK-linear map 1.\-1: AS-. AS through 

{
d:. 

M di= - -1 i t 
. Yi 'Yi d,, 

i = l, .. _.,n, 

i. = n + 1,-.... m. 

Clearly ord Md 1 == ord di for all i = I •...• m, and, since both of the bases are 
adapted, Theorem 3.21 and Corollary 3.22 imply that Mis OK-unimodular. 
That M [ t,.] = a1 follows from "the constrµction. • 

Related to the noti~n of OK-adapted bases is also the following 

DEFINITION 4.12. Let '], 1, ... , ~,; c AS be OK-rational AK-linear sub­
spaces. TI1en 0l 1 .... ;~ k are calle~ O_K-adapted if for every set of elements 
s 1 ... • ,sk• wheres; e .~;, i = 1, ... • k. 

k 

ord(s1 + • • • + sk) = (') ord s,. 
i-1 

It follows readily from the above definition that the concept'ofOK-adapted 
subspaces is equivalent to the following: Let "1-1, .... "1-k e AS be OK-rational 
AK-linear subspaces; and let d 11·, ... ,d.,

1 
be a basis for 0t;. i -1 •... ,k . Then 

the subspaces 0t1,.- .. ,~,. are OK-adapted if and only if du, ... ,d 11, ..... 

dw ... ,du, is an OK-adapted basis for01.1 + · · · + '!Jll. Naturally, f2K-adapted 
spaces are AK-linearly · independent so that the above sum of subspaces is~ in 
fact, a direct sum. Accordingly, we s11eak .of !2K-adaµted direct sums of 
A K-linenr spaces. . 

The concept of OK-adapted subspaces is of course a generalization to 
arbitrary P.I.D.'s of the concept of properly independent and stably indepen­
dent spaces as defined in (5. 7,8). 

Theorem 4.9 leads to the following useful result. 
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CoROLLAl\Y 4.13. Let §t 1 c 9l 2 ( c AS) be OK-rlltional A~-linear sub­
spaces. Tiaen ~ 1 /1as an '2 K-adapted clirect summarad in 0t.2. · 

5. !2K-FACT0RIZATI0N AND INVEI\TIBILITY 

In the present section we consider the following factorization problem. 
Let f.: AU-. AY and fii: AU__. AW be A K-Unear maps. and let OK~ AK be 
a principal ideal domain. Under what conditions does there ex.ist an OK-map 
h: AY ~ AW such that h, = ii/ 1? We first give an abstract version of the 
factorization conditions, and then we .state them in explicit matrix fonn. 
Assume first that there exists an SlK-map la: AY-. AW such that Ji= h· / 1• 

and choose any element ~ E AU which satisfies the condition f.( u) E OY. or. 
in the notation of (2.10). · that u E ker1r0Kf.. Then. obviously. /i.( u) = h· / 1( u) 
E OW, so that u e kern 0K.'2, Thus, the existence of the OK-map ii satisfying 
/:i ~ f, / 1 implies that ker 1TnK J. c ker 1r0 K /.i. In case the maps / 1 and h, are 
GK-rational, the converse of this statement is also true, and we . have the 
following 

THEOREM 5.1.. Let ii : AU-+-AY and h: AU -. AW b_e D. K-rational AK­
linear maps. There exists· an !lK-~ap ii: AY-. AW such tlaat h_ = /1· / 1 if and 
only if ker'"nKl. c kern 0K,'2. · 

We prove Tilcorem 5.1 with the aid of the following lemmas. 

LEMMA 5.2. Let i: AU_. AY be an GK-rational AK-linear map. Let 
r: =- dimAKim /. ancl let Y0 CY be any r-dimensional subspace. Then tlaere 
exists an !2K-unimodular map M: AY-. AY ·sucl& that Im M · /= AY0 • 

Proof Let 5" denote the transfer matrix of/. and let the Smith-McMillan 
representation of '5' be given as 

where ML and Mn are OK-unimod~ar matrices, and D = diag (y 1, •••• · 

y,,0, ... ,0) is the Smith-McMillan fonn of~. Now, Mz1 is also UK-w1imo<lu­
lar and. upon identifying maps with their transfer matrices, we obtain 
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We now define an invertible K-linear map V: Y-+ Y such that . . 

Then we obtain 

so the proof is complete upon setting M: = VMi 1
• • 

LEMMA 5.3. Let/: AU-+ AY be a AK-linear map. Ifljl, c kerw 0 K/ ts a 
AK-linear subspace, tlaen ~ c ker /. 

Proof Assume u E ~ c ker '"°'' /. where ~ is a AK-linear subspace. 
Then au E kern 01j for all a E AK. Thus/( au)= a/( u) E OK for all a E AK., 
whence. ·since OK =-= AK. necessarily i( u) = 0 and u e ker ! • 

Proof of111eorem 5.1. The necessity was already seen at the beginning of 
the section. To pr~ve the sufficiency, assume that'kernnK/ 1 c ker~oKh· Let 
r: = dimAKim / 1,"and let Y0 be any r-dimensional subspace of Y. By Lemma 
5.2 there exists an OK-unimodular map M: AY-+ AY such that Im· )lj'. == AY0 • 

Denoting /o: = M/ 1, it follows at once. from the necessity condition above 
con,bined with .the fact that both M and M- 1 are OK-maps. that Ker '"aK lo == 
ker'"nK/ 1• Thus, ker1r0K/o c ker1r0Kh· Lemma 5.3 then implies that ker lo c . 
ker _'2. so that there exists a ~K-llnear map ii0 : AY-+ AW such that i'i0 io == i;.. 
We still have to show that h0 can be chosen as an OK-map. Let 1·1 c Y be a 
direct summand of Y0 in Y. that is, Y = Y0EDY1• Also, let P: AY-+ .\Y denote 
the projection onto AY0 along AY1, i.e., if y =·y0 + y 1 e AY is the decomposi­
tion of 1J in.to its components Yo E AY0 and y1 E AY1, .then P(y) = y0 • We 
now define the map ii: = h0 • P· M, and for each u e AU we have 

whence ii/1 =-j2• To conclude the proof, we need to show that ii is an 
OK-map. Since, by definition, Mis an OK-map, it suffices to prove that so. is 
also h0 P. To this end, first note that every element !/ e OY decomposes 
uniquely into y = y0 + y 1 with !lo E OY0 and y 1 E '1Y1• Thus. for every !J e P.r. 
noting that !lo E / 1 [ker '"nK / 1 ], we obtain 
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for a suitable u e kernm,ft. Since by hypothesis ker1r0 K/ 1 c ker1ru,.J2.. it 
follows that la,,P(v)-/.i.(u)E ow\ so that li;,.i,:OYJ COW, and J"iuP is an 
UK·map. This completes our proof. • 

Theorem 5.1 udmits the following . 

Conou...ARY 5.5. Let / 1, / 2 : AU-+ AY be OK.rational J\K./inear maps. 
There exists an OK-unimotlular map M.: AY-+ A.Y sue/a that / 2 = M/1 if and 
only if ker 1ro,.J1 =- kernnK k 

Proof. The necessity follows immediately from Theorem 5.1. To see the 
sufficiency. suppose ker 'lrnK /i'= ker '1TnK / 2• so that •. by Lemma 5.3. also 
ker / 1 = ker / 2 and dim Im / 1 = dim Im h =: r. Let Y0 c Y be an r-dimensional 
K-line~r subspace, and let M1• M2 : AY-+ AY be OK-unimodular maps such 
that Im M.f1 = Im M2A = AY0 (see Lemma 5.2). Denoting /;o: = M,l, (i = 
1,2). we obviously still have that kern 0 K/ao = kernn 11] 20 • Dy Theorem 5.1 
there are then OK·maps h10• fi20 : AY-+ AY such that / 20 =. h10/ 10 and / 10 = 
h20 / 20 • Let Y1 CY be a direct summand of Y0 in Y, and let P: AY-+ AY be 
the projection defined in the prqof of Theorem 5.1. Now define the OK-maps 
h1 == P(h10 - I)P+ I and h2 = P(li20 - I)P+ I. wh~re I is the identity map in 
AY. Clearly then also / 20 = h.f10 and / 10 = h2/.i.0 and also li2J11 = ii/12 = I. as 
can be verified by direct computation. It follows that /11 is OK-unimodular, 
and the O K·unimodular map M: = M 2 1 '11 M 1 satisfies the condition of the 
coroUary. • 

We call a AK-linear map i: AU-+ AY DK-left inoertible if it has an 
OK-map as a left inverse, that is. iI there exists an OK·map /1: AY-+ AU such 
that ii/= I. The following further corollary' to Theorem 5.1 characterizes the 
DK·lef t invertible maps. 

ConoLLAJ\Y 5.6. An OK-rational AK-linear map /: AU-+ AY is OK.left 
inoertible if and only if ker1r0 1.:/c OU. 

Proof. First note that ker1rrzKI = SlU, where I: AU-+ AU is the identity 
.map. If jhas an OK-left inverse h: AY ..... AU (i.e. /1/= J), then ker1r0K/ c 
ker'IT0 ,_.f /=-OU. Conversely, if ker.1r0 K/ c OU ( - ker1r0 ,,)), then the ex· 
istence of /i is ensured by Theorem 5.1. · • 

Before concluding this section. we. wish to express in an explicit fom1 the 
·main quantitie·s that appeared in our discussion. Let /: J\U-. AY be an 
OK·rational AK·linear map. We start with an .explicit representation of the 
OK-module kcr1r0 ,J. We shall identify the map /with its transfer matrix, a~ul 
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shall denote r: = dim" K Im /. Let ML: AY -+ A-Y and MR : AU -+ AU be OK­
unimodular maps such that/- ML D MR. where the matrix D: AU -. Al" is of 
the fonn 

D= (Do . 0.) 
0 0 I 

with D0 : A Kr-+ AK' (square) nonsingular. One possible choice of D is, of 
course, the Smith-McMillan canonical form of/. Also, we let U0e U1 = U be a 
direct sum decomposition, where AU0 = ker D and AU1 is the domain of D0 • 

Now, _ker7Trud= ker7T0 KMLDMR = MR1[ker7T0KMLD], and, applying 
Corollary 5.5, we obtain that ker,r 0 K/= MR1[ker7TnK DJ. Further, it is readily 
seen that ker7T0 1:D = D0 1(llU.J6iAU0 and consequently we have 

. (5.7} 

and 

(5.8) 

Defining now the map 

we have that 

(5.9) ker,roKi:a _l.['1U1] +ker i, 

so that i • generates the .. bounded part" of ker'ITnK/. 
Next. let/': AU--. AY' be a AK-linear map. We ·express in explicit matrix 

form the condition of ·The<;>rem 5.1. The. inclusion ker1Tn1:./ c ker,r 01j' is 
evidently equivalent to / '(ker 7ToK /] c '2Y'. Substituting now (5.9), and not: 
ing that ker / is a AK-linear subspace, the latter condition can be split into the 
two conditions: .(i) /'/ .[ilUiJ C ilY', (ii) /'[ker /) = 0. These conditions are 
then, respectively, equivalent to simply (in) J/. is an !2K-map, ancl (iia) 
ker J c _ker /'. 

Returning now to Theorem 5.1, we can swnmarize as follows: 171ere exists 

an OK-mllp i'i: .. \Y-+ AY .such tlaat i'_= ii/ if and 011/,y if i'J. is an fZK-,nap 
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and ker ic ker /'. Moreover, through a direct computation one can show 
that, il h exists. then it is necessarily of the fonn 

(5.10) 

whe~e_p: - dimK Y. and y 1 •••• 1 y,,_, are (arbitrary) elements~ in !2Y'. Thus, the 
map/•• which generates the "bounded part" of ker1r01J 1• plays a central 
role in factorization theory. serving as.a certain generalized type ·of" inverse" 
of i for the purpose of explicit !2K-factorization. 

6. PRECOMPENSATION AND STABLE OUTPUT FEEDBACK . 

We tum no~ to a brief discussion of some applications of the above 
factorization theory to the study of feedback systems. in which the feedback 
compensator is stable (and causaJ). Let/: AU-+ AY be a linear ijo map (with 
U and Y finite dimensional). and let f: AU-+ AU be a bicau.sal AK-linear map 
(i.e., n- K-unimoclular) which we regard as a precompensator for/ We can 
express f- 1 as 

(6.1) 

where L: U-+ U is static [6) and where ii is strictly causal. If. addition~y. we 
can · express hash= g/for some causal map g: AY-+ AU. then we can give f 
an output feedb~ck interpretation through the fonnula 

if ... i(I + gf') - i L, 

which can be represented as the following block diagram: 

(6.2) 

The map g is then clearly a causal dynamic output feedback co1npensator, 
and L is a coordinate transformation map in the input value space. The 
problem of representing a precompensntor f as a configuration of the fonn 
(6.2) is considered in (3). In the present section we consider this problem 
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under the additional requirement that the feedback ~ompensator g be stable. 
From the applications point of view, it is, of course, preferable to deal with 
stable compensators, whenever this is possible. Clearly, the feedback c:om­
pensator can be chosen as a stable (and causal) system exactly when the map 
h of (6.1) can be factored over /through an Sl~K-map g. Using Theorem 5.1. 
we arrive at the following. · 

T11EOREM 6.3. · Let/: AU-+ AY be a rational linear ijo map, let i: .\t' 
-+ AU be a rational bicausal precampensato-r far/, and express i as in (6.1). 
There exists a ·causal and stable output feedback representation for i if and 
only if ker ffn-;.K/ C ker,rll,iKla. 

REMA,RK 6.4. A system is said to be internally stable if all its modes, 
including the lll\reachable and the unobservable ones. are stable. The notion 
of internal stability is particularly important when considering composite 
systems, since the composition may generate hidden modes, and if these are 
unstable. the stability of the final system will of course be destroyed. We are 
presently interested in the composite system (6.2). It can he shown that (6.2) 
is internally stable if and only if all four of the maps, i../ l ig, and/ ig are ijo 

· stable (3). In particular, in . the case of stable feedback, g is stable, and we 
obtain that (B.2) is internally stable if and only if both of the maps i and ii 
are i/ o stable. 

We . say that a linear i/o map i: AU-+ AY is Sl"i>K-minimum phase (or, 
simply, minimum phase) if it is an Sl<;>K-map (i.e., s'table) and is 0-\'K-left 
invertible. Thus, using Proposition 2.4 and Corollary 5.6, we obtain that/ is 
Oc,oK-minimurn phase precisely whenever 

(6.5) ker w0~K J == D.<;>U. 

We recall further [5] that a linear ijo map/ is called nonlatent if 

(6.6) 

Clearly. (6.6) is equivalent to ker,r 0 -x(z.i) = o- U. Thus, by Proposition 2.4 
and Corollary 5.6. / is nonlatent if and only if z/ is both causal and o-K-left 
invertible. Obviously, in. the last statement, z/ can be replaced by (.: + a )i. 
where a is any element in the field K. · 

In particular. assume that z+ a is in the denominator set 01'. Then. clearly. 
/is minimum phase if and only if (z + a)/is. Combining now (6.5) and (6.6), 
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we obtain that/ is both nonlatent and minimum plaase if ancl only ·;f 

(6.7) kerfTo;.,J- (z + a)U~ U. 

where : + a e oi>. 
We now have the fqllowing theorem which is an analog to Corollary 5.4 in 

(5]. 

THEOREM 6.8. Let/: AU_. AY be an Vo-stable linear ijo map. Assume 
that tlae denominator set 6j) contains two different first degree polynomials 
z + a and z + /J. 11aen J is nonlatent and minimum phase if and only if everv 
U~K-.unimoclular precompensator i: AU_. AU has" caused anti stable feecl­
back representation (L, g), i.e .• there exists a pc,ir (L, g), where L is stlJtic· 
and g is causal and ijo stable. sucla tlaat f == [J + gl]- LL. 

Proof. U J is nonlatent and minimum phase, then 

ker 'ITll~K l == Z {2~ U C ker 'ITo:~K ia 

for every strictly causal and stable ii. Hence sufficiency holds, and i [ = ( J + 
h)- 1 L) has a causal and stable feedback representation. Conversely, assume 
that every {2~ K-unimodular f has a causal and s_table f eedbac~ repr~sentation 
( L, g). In particular. consider the n~ K-unimodular precompensator 

- z+a · 
I:= z +/JI ~ AU-. AU. 

where z + a, : + /J E L'i) and a~ p. Then. denoting y: = fJ - a, we obtain that 
(Zfl [J + ii}- 1, where h= [y/(z + a)]I. Now, by assumption, there exists a 
causal and ijo-stable map g such that ii= gf. whence, by Theorem 5.1. 
ker '"n~K Jc ke~ w0~K ii= ( z + a )O~ U. Fu~th~nnore. · since / is strictly ·· cau!al 
and i/ o stable. also ( z + a ){l~ U c ker wll,iK f, . and we obtain that ker w0 .~,J = 
(z + a){l~ U.·Thus. by (6.7).f is nonlatent and minimum phase. · • 

The interest in Theorem . 6.8 d~rives from the fact that stable injective 
linear i/s maps (6) are always nonlatent and minimum phase. This fact is seen 
as follows. It was shown in [4) that if/: AU-. AY is an injective linear ifs 
map. it is ~·trictly observable. i.e. ker 'ITo. "Jc {l + U. Let D be an S1 + K-adaptcd 
basis matrix for kcr w0 • K J. thut is, DU+ U = ker '"o. K J. It is easily verified 
that we then also have that DU.;oU-kcr1ru.,,KJ. Now. the strict observability 
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of / implies th,it D is a polynomial matrix, and thus DO."(} c nii\u (since 
n + K c-n~K ). We conclude that ker "n ,JC n'i!u. and if the i/S map / is 

,,f . 

also stable. · the minimum phase property [see (6.5)) follows. That injecti\'e 
linear ifs maps are nonlatent was proved in [5. Theorem 5.5). We summarize 
the above in the following 

Pn0Pos1T10N 6.9. If/: AU - AY is a sta/Jle injective linear i/s map. 
then it is nonlatent and- minimum phase. 

We can •lOW combine Theorem 6.8 with Proposition 6.9 to obtain the 
following. interesting result. 

THEOREM 6.10. Let i: AU-. AY be a stable. injective linear if o map, 
and let i: AU - AU be an 0~ K-unimodular precompensator for/. 171en i laa.s 
a stable causal (dynamic) state feecl!Jack re7>resentation in even; stable 
realiz.ation of/. 

The autlaors wish to express their thanks · to M. L. }. llautus for carious 
illuminating discussions and insights. 
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