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Abstract— The design of state feedback controllers that pro-
tect asynchronous sequential machines from pre-programmed
adversarial agents is considered. Necessary and sufficient con-
ditions for the existence of such controllers are derived. These
conditions are stated in terms of certain matrices of zeros
and ones derived from the given description of the protected
machine. Controller design algorithms are outlined.

Index Terms— malware, pre-programmed agents, automatic
feedback control, asynchronous sequential machines

I. INTRODUCTION

Over the last few decades, computing systems and
networks have experienced a growing threat from pre-
programmed adversarial agents that attempt to corrupt the
systems and subvert their operation. At the same time, de-
mands for speedy performance have substantially increased
the prevalence of asynchronous sequential machines in com-
puting and networking systems (e.g., [1], [2], [3]). In this
paper, we develop a control theoretic approach to over-
come threats posed by pre-programmed adversarial agents
on asynchronous sequential machines. We derive necessary
and sufficient conditions for the existence of automatic
feedback controllers that counteract such agents; controller
construction is also outlined. Particular attention is placed on
assuring deterministic behavior of the controlled machines.

Specifically, we consider the configuration of Figure 1,
where two controllers – an adversarial controller CA and a
defensive controller CD – act on the asynchronous machine S.
Both controllers are autonomous state feedback controllers,
and each accesses S through its own input channel. Here,
CA and CD are pre-programmed asynchronous machines; the
composite machine of Figure 1 is denoted by S(CA,CD).
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Fig. 1. Adversarial/defensive control

The controllers CA and CD act alternately, each applying
in its turn a string of characters to S. The objective of CA is
to drive S into a target set of states TA, while the objective
of CD is to drive S into a target set of states TD, where
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TA and TD are specified disjoint sets. A controller prevails
when S reaches a member of its target set. Sections IV and
V present necessary and sufficient conditions for each one
of the controllers to prevail. The conditions are expressed in
terms of quantities derived from the given description of the
controlled machine S.

Later (section V) we characterize states of S from which
one of the controllers cannot be prevented from prevailing. In
all cases, we outline controller designs. Like the machine S,
the controllers are asynchronous machines, and thus special
precautions are required to ascertain deterministic behavior,
as discussed next.

A. Trigger machines
An asynchronous trigger machine receives as input short

pulses, or triggers (ideally, of zero duration, e.g., [4]). As
asynchronous trigger machines are in wide use – in fact, most
asynchronous computing machines are trigger machines – we
concentrate in this note on such machines.

The machine S of Figure 1 is an asynchronous trigger
machine S = (A,D,X , f ,x0) with two inputs and state output;
here, A and D are input alphabets; X is the state set;
the partial function f : X ⇥ (A ⇥ D) ! X is the recursion
function; and x0 is the initial state. In response to a string of
trigger input pairs (u0,u0)(u1,u1)(u2,u2) · · · 2 (A⇥D)+, the
machine S generates a string of states x0x1x2 · · · 2 X+ given
by

xk+1 = f (xk,(uk,uk)),k = 0,1,2, ... (1)

A triplet (x,(u,u)) 2 X ⇥(A⇥D) is a valid combination if f
is defined at it. A stable combination is a valid combination
(x,(u,u)) for which x = f (x,(u,u)), namely, S rests at x;
in such case, x is a stable state. Otherwise, when x 6=
f (x,(u,u)), then x is a transient state. A transient state is
traversed very quickly (ideally, in zero time).

Notation 1.1: (i) The symbol ’¬’ indicates the absence of
a trigger. Thus, (u,¬) 2 A ⇥ D means that u is triggered in
A with no trigger in D, while (¬,¬) means no trigger at all.
(ii) The state set of S is always X = {x1,x2, ...,xn}. A
subset S = {xi1 ,xi2 , ...,xiq} ✓ X is identified with the set of
integers S = {i1, i2, ..., iq}. ⇤
B. Fundamental mode operation

Fundamental mode operation (e.g., [4]) is an operat-
ing policy that assures deterministic outcomes in an asyn-
chronous environment. In fundamental mode operation, no
more than one signal is triggered at a time; this is because,
in an asynchronous environment, ’simultaneous’ triggers
almost always appear sequentially in unpredictable order,
leading potentially to an unpredictable outcomes. Similarly,
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no input triggers are allowed while a machine is in transition,
since the state at which such triggers reach the machine is
unpredictable. Starting at a stable state x, the machine S is
operated by a trigger (u,u) 2 (A ⇥¬) or (u,u) 2 (¬⇥ D);
this takes S into a chain of transitions

x1 = f (x,(u,u)),x2 = f (x1,(¬,¬)),x3 = f (x2,(¬,¬)), · · ·

As S has no infinite cycles, this chain terminates, i.e.,

xi = f (xi,(¬,¬)) (2)

for an integer i � 1. Then, xi is the next stable state of the
triplet (x,(u,u)). The stable recursion function s : X ⇥ (A⇥
D) ! X of S assigns to every valid combination (x,(u,u))
its next stable state x0, i.e., s(x,(u,u)) := x0.

For the machine S of Figure 1, the following are required
for fundamental mode operation.

Rule 1.2: Fundamental mode operation. Starting at a
stable state x, the machine S is activated by a string of input
triggers (u1,u1)(u2,u2)... 2 (A ⇥ D)+. Then, (i) for all i =
1,2, ..., either ui = ¬ or ui = ¬; and (ii) no input triggers
appear while S is in transition. ⇤

In fundamental mode operation, an input string (u,u) =
(u1,u1)(u2,u2) · · ·(u j,u j) is applied one character at a time
starting at a stable state x; after each input trigger, we wait
for S to reach a stable state, before applying the next input
trigger. At the end of the input string, S reaches the stable
state x0. Such a transition from a stable state x to a stable
state x0 forms a stable transition. Users are affected only by
stable transitions, since transients are very quick. Therefore,
controller design aims at achieving suitable stable transitions
of the closed loop machine.

A state x0 is stably reachable from a state x if there is a
stable transition from x to x0. Fundamental mode operation
of Figure 1 implies the following.

Rule 1.3: For the machines S,CA, and CD of Figure 1,
(i) Only one of the machines may trigger at a time;
(ii) A machine must be in a stable state when triggered;
(iii) Only one machine can be in transition at a time. ⇤

The following terminology is used below.
Definition 1.4: Let x and x0 be two states of a machine S

that has the two inputs A and D.
(i) A�action is a string of triggers applied in fundamental
mode operation to input A, with input D inactive.
(ii) D�action is a string of triggers applied in fundamental
mode operation to input D, with input A inactive.
(iii) x0 is stably reachable from x by A�action if A�action
can induce a stable transition from x to x0.
(iv) x0 is stably reachable from x by D�action if D�action
can induce a stable transition from x to x0. ⇤
C. Controller turns

The controllers CA and CD of Figure 1 operate in turns:
in each turn, one controller acts, while the other controller
rests in a stable state. The objective of each controller is to
drive S to a target state, or – if this is impossible in that
turn – to a ’favorable state’. ’Favorable states’ are defined
by assigning a weight to each state of S. Then, in each turn,

CA takes S to a lowest weight stably reachable state, while
CD takes S to a highest weight stably reachable state.

Such a framework is relevant in many applications. For
instance, consider a computing system that controls power
plants. In somewhat simplistic terms, an adversarial agent
will attempt to bring the system to a state of lowest power
production, while a defensive controller will attempt to take
the system to a state of highest (or normal) power production.

D. General background
This paper is within the framework for the control of

asynchronous machines of [5], [6], [7], [8], [9], [10], [11],
[12], [13], [14], and [15].

There is an extensive literature on the control of finite
state sequential machines, including [16], [17], [18], [19],
[20], [21], [22], the references cited in these publications,
and many others. The studies mentioned in this paragraph do
not address issues specific to the operation of asynchronous
sequential machines, such as the distinction between stable
and transient states or the requirement of fundamental mode
operation.

II. BASICS

A. State weights
As indicated earlier, each controller of Figure 1 attempts in

its turn to take S to a state most favorable to that controller’s
objectives. The following notion formalizes the term ’most
favorable’ (Z denotes the integers).

Definition 2.1: Let S be an asynchronous trigger machine
with the state set X and the target sets TA and TD. A function
w : X ! Z is a weight function if TA is the set of states at
which w is minimal, while TD is the set of states at which
w is maximal. The weight of a state x 2 X is w(x). ⇤
The operating policy of Figure 1 is then as follows.

Rule 2.2: In its turn, CA takes S to a lowest weight state
stably reachable by A�action, and stops; CD takes S to a
highest weight state stably reachable by D�action, and stops.
⇤

It is possible for a machine S to have several stably
reachable states of the same extremal weight. In such case,
for best efficiency, controller turns terminate at the first
encountered stably reachable extremal weight state.

Rule 2.3: Operating policy. In Figure 1, let TA and TD
be the adversarial and defensive target sets, respectively, and
let w : X ! Z be the weight function of S. Then, CA and CD
operate in alternate turns according to:
(i) Start: At the initial state, CA acts first.
(ii) Turns: In its turn, CA uses A�action to drive S,
stopping at the first lowest weight stably reachable state it
meets; CD uses D�action to drive S, stopping at the first
highest weight stably reachable state it meets.
(iii) Progression: (a) A controller activates when the other
controller has reached the end of its turn. (b) A controller
forfeits its turn if all states of S it can stably reach are
target states of the other controller.
(iv) Target states: both controllers remain in a stable state,
once S has reached a target state. ⇤



In particular, the rule implies that, when a controller
initiates a turn at a most favorable state it can stably reach,
it will end its turn with no action, leaving S at that state.

Example 2.4: Consider the stable state machine S =
(A,D,X ,s,x0), with A = {a1,a2}, D = {d1,d2}, X =
{x1,x2,x3,x4,x5}, x0 = x1, and stable recursion function s
of Table I. In the first turn, CA takes S to x4. In the next
turn, x1 and x2 are the highest weight stably reachable states
by D�action. The designer of CD decides to which of these
states to take S. Here, selecting x2 would permit CA to prevail
in the upcoming turn – a poor choice. Selecting x1 results in
an infinite cycle of the closed loop machine S(CA,CD) with
no controller prevailing. ⇤

xi (a1,¬) (a2,¬) (¬,d1) (¬,d2) w(xi) Target set
x1 x1 x4 x1 x2 4
x2 x1 x3 x2 x1 4
x3 x1 x1 x4 x5 1 2 TA
x4 x4 x1 x1 x2 3
x5 x1 x4 x1 x2 5 2 TD

TABLE I
STABLE TRANSITIONS OF S

Rule 2.3 implies the following characterization of the
possible outcomes of the control process of Figure 1.

Proposition 2.5: For Figure 1, (i) and (ii) are equivalent.
(i) The control process terminates with S in a stable state x.
(ii) x is a target state; or all states stably reachable from x
by both A�action and D�action have the same weight as x.

B. The local sink

Rule 2.3(ii) leads to the following notion.
Definition 2.6: Let S be an asynchronous trigger machine

with the state set X and the weight function w . For a
state x 2 X , let S(x,A) ✓ X (respectively, S(x,D) ✓ X) be
the set of all states that are stably reachable from x by
A�action (respectively, by D�action). The local A�sink
SA(x) (respectively, D�sink SD(x)) is the set of lowest
(respectively, highest) weight states stably reachable from
x by A�action (respectively, D�action), i.e.,

SA(x) := {x0 2 S(x,A) : w(x0)  w(x00) for all x00 2 S(x,A)},

SD(x) := {x0 2 S(x,D) : w(x0) � w(x00) for all x00 2 S(x,D)}.
Example 2.7: Example 2.4 yields SD(x4) = {x1,x2}. ⇤

In view of Rule 2.3(ii), the controllers CA and CD must
determine whether S has reached a member of the local sink.
This is achieved by state feedback, as follows.

Lemma 2.8: Refer to Figure 1. By using state feedback,
a controller can determine whether (and at what state) the
other controller’s turn has ended.

Proof: (sketch). The controller CA ends its turn when
S reaches a stable state at the first member of SA(x) it
encounters. As SA(x) is known from the given description of
S, state feedback allows CD to detect when S stably reaches
a member of SA(x), indicating the end of the CA turn. The
case of CD action is analogous.

Lemma 2.8 and Rule 2.3 guarantee fundamental mode oper-
ation.

Proposition 2.9: Under Rule 2.3, the composite machine
S(CA,CD) of Figure 1 operates in fundamental mode. ⇤
Appropriate controllers CA and CD can be constructed by a
process similar to the one used by [5], [6], and [7].

Construction 2.10: Building the controllers CA and CD:
We describe the construction of CA; the construction of CD
is similar. The controller CA consists of two asynchronous
trigger machines: an observer O and an action part Ca

A; here,
O detects the end of a controller turn, while Ca

A applies
A�action commands to S, after being activated by O .

Part I: Constructing O: Choose two new and distinct
characters cA and cD to serve as output characters of O ,
where cA is to activate Ca

A to start a CA turn, and cD is to
activate Ca

D to start a CD turn. In a CA turn starting at a state
x of S, O detects when S stably reaches a state of SA(x)
(see Lemma 2.8). In a CD turn starting at a state x of S, O
detects when S stably reaches a state of SD(x). The output
of O is generated by a function f : X ⇥ X ⇥ {A,D,N} !
X ⇥ {cA,cD} : (x,z,z ) 7! (x0,c), where x is the state of S
at the start of a controller turn; z is the current state of S;
z specifies the active controller (A for CA; D for CD; N
for no active controller); x0 is the state of S at the end of
the controller turn; and c is cA or cD, activating the next
controller (below, \ indicates set difference).

Initial turn (x0 is the initial state of S):

f(x0,x0,N) :=

(
cA if x0 /2 TA [TD;
¬ otherwise.

During a turn of CA that started at x:

f(x,z,A) :=

(
(z,cD) if z 2 SA(x)\TA;
¬ otherwise.

During a turn of CD that started x:

f(x,z,D) :=

(
(z,cA) if z 2 SD(x)\TD;
¬ otherwise.

The observer O remains silent after S has reached a stable
state at a target state.

Part II: Building Ca
A: Consider a turn of CA that starts at

the state x of S. Select a state x0 2 SA(x) that satisfies the
condition: there is an A�action string u = u1u2 · · ·uqA(x) 2
(A⇥¬)+ that takes S from x to x0 without passing through
a member of SA(x) (how to find such strings is discussed in
later sections). This A�action will take S through a string
of states x1x2 · · ·xdA(x), where xdA(x) = x0; let xi1 ,xi2 , ...,xiqA(x)

be the stable states in this string, namely, xi1 = s(x,u1), and
xik+1 = s(xik ,uk+1), k = 1,2, ...,qA(x)�1, where s is the stable
recursion function of S and xiqA(x) = x0.

To implement the input string u, build in Ca
A a subset

of states XA := {x

0, x

1
A(x), x

2
A(x), ..., x

qA(x)
A (x)}, where

x

0 is the initial state of Ca
A. On these states, define the

recursion function jA : XA ⇥X ⇥{cA,cD} ! XA : (x ,z,c) 7!



jA(x ,z,c) by

jA(x ,z,c) :=

8
>>>>>><

>>>>>>:

x

0 if x = x

0,c 6= cA;
x

1
A(x) if x = x

0,z = x,c = cA;

x

k+1
A (x)

if x = x

k
A(x),z = xik ,c = ¬,

k = 1,2, ...,qA(x)�1;
x

0 if x = x

qA(x)
A (x),z = x0,c = ¬;

and the output function hA : XA ! (A⇥¬) by

hA(x ) :=

(
(¬,¬) if x = x

0;
(uk,¬) if x = x

ik
A (x),k = 1,2, ...,qA(x).

It can then be seen that the resulting controller complies with
Rule 2.3 (compare to [5] and [6]; see [23] for more details).
⇤

III. TRANSITION MATRICES

A. Input pairs
The controlled machine S has two inputs – one from the

alphabet A and one from the alphabet D – and, as a result,
its inputs are pairs (u,u) 2 A ⇥ D. In fundamental mode
operation, only one input can be active at a time, i.e., u = ¬
or u = ¬, and inputs always come from the set

A⌦D := {(u,u) 2 A⇥D : u = ¬ or u = ¬)}. (3)

We use the character N to denote an impossible transition.
Concatenation of strings (a,b),(a0,b0) 2 (A ⌦ D)+ [ N is

defined by

conc((a,b),(a0,b0)) :=

(
(aa0,bb0) if (a,b),(a0,b0) 2 (A⌦D)+;
N if (a,b) = N or (a0,b0) = N.

For subsets S1,S2 ✓ (A⌦D)+ [N, the sum is

S1 ]S2 :=

8
><

>:

S1 [S2 if S1 6= N and S2 6= N,

S1 if S2 = N,

S2 if S1 = N.

The concatenation of sets of strings S1,S2 ✓ (A⌦D)+ [N is

conc(S1,S2) :=
]

s12S1,s22S2

conc(s1,s2). (4)

B. Matrices
Generalizing a notion of [5] and [6], we build two n ⇥ n

one-step matrices of stable transitions: for i, j = 1,2, ...,n,

R1
i j(S,A) :=

8
><

>:

{(u,¬) 2 (A⇥¬) : x j = s(xi,(u,¬))}
if x j 2 s(xi,(A⇥¬)),

N otherwise;

R1
i j(S,D) :=

8
><

>:

{(¬,u) 2 (¬⇥D) : x j = s(xi,(¬,u))}
if x j 2 s(xi,(¬⇥D)),

N otherwise;

here, the first matrix describes outcomes of one step
A�action and the second describes outcomes of one step
D�action.

Example 3.1: For Example 2.4, a calculation yields

R1(S,A) =

0

BBBBBBB@

⇢
(¬,¬),

(a1,¬)

�
N N {(a2,¬)} N

{(a1,¬)} {(¬,¬)} {(a2,¬)} N N⇢
(a1,¬),

(a2,¬)

�
N {(¬,¬)} N N

{(a2,¬)} N N
⇢

(¬,¬),

(a1,¬)

�
N

{(a1,¬)} N N {(a2,¬)} {(¬,¬)}

1

CCCCCCCA

⇤

For two such n⇥n matrices E and F , the sum E +F has the
entries

(E +F)i j := Ei j ]Fi j, i, j = 1,2, ...,n;

and the product EF has the entries

(EF)i j :=
]

`=1,...,n
conc(Ei`, F̀ j), i, j = 1,2, ...,n.

Powers are defined by

E` := EE`�1,` = 1,2,3, ...,

and the combined power is

E(`) := E1 +E2 + · · ·+E`.

We can now rephrase a result of [5] and [6].
Proposition 3.2: The following are true for two stable

states xi,x j of S:
(i) x j is stably reachable from xi through A�action if and
only if (R1(S,A))(n�1)

i j 6= N.
(ii) x j is stably reachable from xi through D�action if and
only if (R1(S,D))(n�1)

i j 6= N. ⇤
We incorporate now the requirements of Rule 2.3 into the
transitions matrices: (a string u1 is a strict prefix of a string
u2 if there is a non-empty string u3 such that u2 = u1u3).

Construction 3.3: The matrix of A�stable transitions:
On the matrix (R1(S,A))(n�1), perform the following opera-
tions for i = 1,2, ...,n (here, TA,TD are the target sets and w

is the weight function):
Step 1: If xi 2 TA [TD, then replace all off-diagonal entries
of row i by N.
Step 2: If xi 2 TD, then replace by N all off-diagonal
entries of column i.
Step 3: Denote by zA(i) the set of all remaining integers
j 2 {1,2, ...,n} for which position j of row i is not N. If
zA(i) 6= ?, the minimal weight of a stably reachable state is
wA(i) = min j2zA(i) w(x j). Replace by N all entries j of row
i for which w(x j) > wA(i).
Step 4: In row i, delete all strings that include as a strict
prefix a string that appears anywhere else in row i; replace
by N entries that become empty.
Step 5: If an entry includes the string (¬,¬), then delete
all other strings from this entry.
This yields the matrix of A�stable transitions R(S,A). ⇤

Example 3.4: For Example 2.4, a direct calculation yields:
(only one string is listed per entry to simplify typography)

R(S,A) =

0

B@

N N N {(a2,¬)} N
N N {(a2,¬)} N N
N N {(¬,¬)} N N
N N N {(¬,¬)} N
N N N N {(¬,¬)}

1

CA . ⇤



The A�action skeleton matrix K(S,A) is then:

Ki j(S,A) :=

(
1 if Ri j(S,A) 6= N,

0 otherwise.
j = 1,2, ...,n, (5)

Example 3.5: From Example 3.4:

K(S,A) =

 0 0 0 1 0
0 0 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

!
. ⇤

The following is a consequence of Construction 3.3 and (5).
Proposition 3.6: Under Rule 2.3, one turn of A�action

can take S from a state xi to a state x j if and only if
Ki j(S,A) = 1. In that case, Ri j(S,A) consists of A�action
input strings that take S from xi to x j, observing Rule 2.3.⇤
The matrix of D�stable transitions R(S,D) and the
D�action skeleton matrix K(S,D) are constructed analo-
gously and have features similar to those of R(S,A) and
K(S,A), respectively.

A terminal state is a state from which a machine cannot
be moved. The definition of a skeleton matrix implies:

Proposition 3.7: Under Rule 2.3, the following are valid
for a state x j of S. (i) x j is a terminal state for A�action
if and only if Kj j(S,A) = 1. (ii) x j is a terminal state for
D�action if and only if Kj j(S,D) = 1. ⇤

IV. CONSECUTIVE TURNS

By Rule 2.3, the controllers CA and CD of Figure 1 operate
in turns: CA starts from the initial state x0 = xi of S; by
Proposition 3.6, it takes S to a state x j selected by the
designer from among the states for which Ri j(S,A) 6= N.
The input string CA must generate for S is a member of
that Ri j(S,A) entry, and CA is built by Construction 2.10.

Next comes a turn of CD. The states S can stably reach at
the end of this turn are given by the non-N entries of row i
of R(S,A)R(S,D); designer selection determines which one
these will be implemented. Next, CA acts again; at the end of
its turn, S can rest at any state for which the corresponding
entry of row i of R(S,A)R(S,D)R(S,A) is not N. Continuing
in this way leads to the following.

Definition 4.1: The compound matrix of stable transitions
R(S) and the compound skeleton matrix K(S):

R(S) :=
n�1

Â
i=1

⇥
(R(S,A)R(S,D))i�1R(S,A)+(R(S,A)R(S,D))i⇤

Ki j(S) :=

(
1 if Ri j(S) 6= N,

0 otherwise.
⇤

Example 4.2: For the machine S of Example 2.4,

R(S) = R(S,A)+(R(S,A)R(S,D))+

(R(S,A)R(S,D))R(S,A)+(R(S,A)R(S,D))2 +

(R(S,A)R(S,D))2R(S,A)+(R(S,A)R(S,D))3 +

(R(S,A)R(S,D))3R(S,A)+(R(S,A)R(S,D))4.⇤
The fact that S has only n states enables us to prove the
following (see [23] for details).

Lemma 4.3: Assume that S starts from the initial state
x0 = xi and is controlled in compliance with Rule 2.3. A

state x j of S can be the outcome of a succession of controller
turns if and only if Ki j(S) = 1. ⇤
This allows us to characterize the final outcomes of the
control process of Figure 1.

Theorem 4.4: Assume that the control configuration of
Figure 1 operates in accord with Rule 2.3, with S having
the initial state x0 = xi. Then,
(i) There are controllers CA and CD that guide S to a
terminal state at x j if and only if Ki j(S) = 1, Kj j(S,A) = 1
and Kj j(S,D) = 1.
(ii) There are controllers CA and CD that guide S into an
infinite cycle if and only if there are integers
p 6= q 2 {1,2, ...,n} such that Kip(S) = 1, Kpq(S) = 1 and
Kqp(S) = 1.

Proof: (sketch) By Lemma 4.3, the state x j can be
reached if and only if Ki j(S) = 1. By Proposition 3.7, the
remaining conditions of (i) are required for x j to be a
terminal state. Regarding (ii), Lemma 4.3 also shows that
controllers that force transitions from xp to xq and back from
xq to xp exist if and only if Kpq(S) = 1, Kqp(S) = 1.
Theorem 4.4 yields the following characterization of the set
Q of all possible terminal states of S in Figure 1.

Corollary 4.5: Under the conditions of Theorem 4.4:
(i) Q =

�
x j 2 X : Ki j(S) = 1,Kj j(S,A) = 1,Kj j(S,D) = 1

 
.

(ii) All controllers CA and CD take S to a terminal state if
and only if xq 2 Q whenever Kiq(S) = 1.
(iii) S may enter an infinite cycle for some controllers CA
and CD if and only if Kiq(S) = 1 for some xq /2 Q. ⇤
This allows us to determine when a controller can prevail:

Corollary 4.6: (i) CA can prevails for some designs of CD
if and only if Ki j(S) = 1 for some j 2 TA.
(ii) Every CA prevails for any design of CD if and only if
j 2 TA whenever Ki j(S) = 1.
(iii) CD can prevail for some designs of CA if and only if
Ki j(S) = 1 for some j 2 TD.
(iv) Every CD prevails for any design of CA if and only if
j 2 TD whenever Ki j(S) = 1. ⇤
Thus, skeleton matrices allow us to determine all outcomes
of the control process. Yet, the design of controllers does
require matrices of stable transitions, as these provide the
strings for controller implementation in Construction 2.10.

V. STATES OF CERTAINTY

For some states of S, the outcome of the control process
becomes pre-determined: one controller prevails if properly
designed, irrespective of actions taken by the other controller.

Definition 5.1: In Figure 1, the controller CA (respectively,
CD) can prevail with certainty from a state x of S if CA
(respectively, CD) can always prevail after starting a turn at
x, irrespective of actions taken by the other controller. ⇤
We need some notation. Let c : X ! {0,1}n be the function
that assigns to a set S = {xi1 ,xi2 , ...,xiq} of states of S the
column vector c(S) = (0, ...,1,0, ...,0,1,0, ...,0)T , where 1
appears in positions i1, i2, ..., iq and zeros everywhere else;
the empty set of states is represented by the zero vector. An



n⇥n skeleton matrix K operates on a vector t 2 {0,1}n with
the result t 0 = Kt, where t 0 = (t 01, t

0
2, ..., t

0
n)

T and

t 0i := max
q=1,2,...,n

{Kiqtq}, i = 1,2, ...,n.

To add vectors J = (J1, ...,Jn)T ,J 0 = (J 0
1, ...,J

0
n)

T 2 {0,1}n:

(J +J

0)i := max{Ji,J
0
i }, i = 1,2, ...,n. (6)

By definition of K(S,A), the set S( j) of all states of S
from which the state x j is stably reachable in one turn of
A�action is given by all entries of 1 in column j of K(S,A).
Consequently, c(S( j)) = K(S,A)c(x j). More generally,

Proposition 5.2: Let S be a set of states of S. The set of
all states of S from which a member of S is stably reachable
in one turn of A�action (respectively, D�action) is given by
the vector K(S,A)c(S) (respectively, K(S,D)c(S)). ⇤
By Proposition 5.2, the set of all states of S from which CA
can prevail in one turn is given by v1

A := K(S,A)c(TA).
The complement vc of a vector v 2 {0,1}n is obtained

by replacing every 0 by 1 and every 1 by 0. Then, (v1
A)c

indicates the set of all states of S from which a member
of TA is not stably reachable in one turn of A�action.
Thus, q

1
A := K(S,D)(v1

A)c characterizes all states of S from
which one turn of D�action can prevent S from entering
the set v1

A; so q

1
A is the set of all states of S from which

CD can prevent CA from prevailing in one turn. Hence,
v2

A := (q 1
A)c = (K(S,D)(v1

A)c)c indicates all states of S from
which D�action cannot block CA from prevailing in one
turn. Thus, if S is in a state represented in v2

A, then CA can
prevail, irrespective of actions taken by CD. Continuing in
this manner we obtain the set of all states of S from which
CA can prevail with certainty (see [23] for details):

v0
A := c(TA)

v1
A := K(S,A)c(TA)

vi
A :=

⇥
K(S,D)(vi�1

A )c⇤c for i = 2,4,6, ...

vi
A := K(S,A)vi�1

A for i = 3,5,7, ...

vA :=
n�1

Â
i=0

vi
A. (7)

Theorem 5.3: The set of all states of S from which CA
can prevail with certainty is given by vA. ⇤
Needless to say, for CA to prevail from a state of certainty
it must be properly designed; appropriate strings that CA
must generate are taken from entries of R(S,A) and used
in Construction 2.10 to build CA.

Example 5.4: For Example 2.4, vA = (0,1,1,0,0)T , so
that CA prevails with certainty from x2 and x3. ⇤
A slight reflection leads to the following simple condition.

Corollary 5.5: CD can block CA from prevailing if and
only if the initial condition x0 of S corresponds to an entry
of 0 in vA. ⇤
Analogous results can be obtained for the other controller.
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