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ABSTRACT 
The problem of controlling a sequential machine under the 

influence of disturbances is considered. A methodology is de-
veloped for the design of controllers that guaranty that the ef-
fect of a "small" disturbance on the performance of the con-
trolled machine remains "small". The methodology is based 
on a theory of fraction representations of sequential machines 
reminiscent of the general theory of fraction representations 
of nonlinear systems. This note is an extended summary of 
HAMMER [1996]. 

1. IN1RODUCTION 
Quite frequently one encounters the need to deal with se-

quential machines that are influenced by disturbances. The 
disturbances may originate from physical noise sources or 
from modeling uncertainties, or they may have a numerical 
origin. As an example of the former, consider a digital con-
trol system with remote telemetry. Here, noises in the 
telemetry communication channel create a disturbance that af-
fects the system. As another example, consider a biochemical 
signaling chain in molecular biology (HAMMER [1995a and 
b]). Here, the natural random nature of biochemical processes 
can be viewed as a disturbance. Digital control systems and 
digital filtering systems furnish examples of sequential ma-
chines where disturbances of numerical origin may become 
important. Other examples of application areas abound. 

Consider then a sequential machine I. that operates 
within an environment with disturbances. To correct undesir-
able disturbance effects and improve the overall performance, 
connect I. to another sequential machine C that serves as a 
controller, as depicted below. 

y 
C 

(1.1) 
z 

Uz 
Here, the composite system is influenced by three distur-
bances: an external input disturbance u3, an in-loop input 
disturbance u1, and an output disturbance u2. The only 
apriori information available about these disturbances is an 
amplitude bound, i.e., it is known that the amplitude of the 
disturbances u1, u2, and u3 cannot exceed a specified 
value. Other than that, no assumption is made as to the na-

ture or the origin of the disturbances. The purpose of the con-
troller C is to drive the system I. so as to elicit from it de-
sirable behavior, while accommodating the disturbances. As 
the figure indicates, the signal y is regarded as the output 
signal of the configuration. The external input signal is de-
noted by v. The symbol Le will be used to indicate the in-
put/output map induced by the closed loop system, so that, 
when the disturbances are absent, y = Lev. 

In the present paper we concentrate on the study of con-
trollers C for which the effect of a disturbance on the output 
signal y does not exceed the original amplitude of the dis-
turbance. We shall refer to such controllers as disturbance at-
tenuating controllers. A disturbance attenuating controller 
guaranties that the disturbance is not amplified, so that 
"small" disturbances have only "small" effects on perfor-
mance. The main result of the paper is the derivation of nec-
essary and sufficient conditions for the existence of distur-
bance attenuating controllers, as well as the construction of 
such controllers, when they exist (for complete results, see 
HAMMER [1996]). 

Following a long standing tradition in digital circuit the-
ory and practice, we conduct our discussion within an in-
put/output framework, where a sequential machine is consid-
ered as a system that maps input sequences of discrete values 
into output sequences of discrete values. Input/output repre-
sentations are usually the most convenient form of specifying 
the desired characteristics of a system, and whence are the 
most common starting point for design considerations. The 
process of implementing a system involves the translation of 
the input/output description into a state representation, or re-
alization, of the system (e.g., KORA VI [1978]). 

The effect of disturbances on closed loop systems is, of 
course, a central and widely studied subject in the literature on 
linear and nonlinear control theory. An important difference 
between the situation considered here and the standard litera-
ture is the fact that presently the systems operate over discrete 
spaces. Consequently, the standard notions of continuity and 
differentiability, which are commonly used to analyze the ef-
fects of small disturbances in classical control theory, need to 
be replaced with other appropriate notions (see sections 2 and 
3 below). 

An important aspect of the framework presented here is 
the development of a theory of fraction representations of se-
quential machines (section 3), in line with the general theory 
of fraction representations of nonlinear systems (HAMMER 
[1984a and b, 1985, 1994a], DESOER and KABUL! [1988], 
VERMA [1988], VERMA and HUNT [1993], SONTAG 
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[1989], CHEN and de FIGUEIREDO [1990], PAICE and 
MOORE [1990], PAICE and van der SCHAFT [1994], 
BARAMOV and KIMURA [1995], and others). It turns out 
that fraction representations provide convenient tools for the 
investigation of disturbance attenuation for sequential ma-
chines, fulfilling here a role analogous to their role in the 
theory of control for systems over continuous spaces. 

The sequential machines considered in this paper are recur-
sive machines over the integers. To be specific, let Z be the 
set of integers, and let 'ZJl be the set of all n-dimensional 
vectors of integers. Then, we consider sequential machines l: 
that permit a representation of the form 
(1.2) Xk+~ = f(Xk,Uk) _ 

Yk - h(xk), k - 0, 1, 2, ... 
where Xk E zn is an n-dimensional vector of integers called 
the state of l: at the step k; Uk E zm is an m-dimensional 
vector of integers called the input value of l: at the step k; 
and Yk E ZP is a p-dimensional vector of integers called the 
output value of l: at the step k. The function f is the re-
cursion function of l:, and h is the output function. We as-
sume that an initial condition xo is provided, so that the re-
sponse to an input sequence is uniquely determined. 

Models of the form (1.2) are used to represent systems in 
many application areas. Some examples are models of bio-
logical signaling chains (HAMMER [1995a and b]); models 
of digital circuits used in computer hardware and software de-
sign; models of digital control systems; and models of digital 
filters. 

In general terms, the material discussed in this paper is 
within the context of the theory of discrete-event systems, al-
though the basic approach relies more heavily on concepts 
and techniques used in nonlinear control theory. The theory of 
discrete event systems offers a number of alternative treat-
ments of problems related to the control of discrete systems; 
these include HOARE [1976], MILNER [1980], ARNOLD 
and NIVAT [1980], RAMADGE and WONHAM [1987], 
VAZ and WONHAM [1986], LIN and WONHAM [1988], 
THISTLE and WONHAM[1988], CIESLAK, DESCLAUX, 
FAW AZ, and V ARAIY A [1988], OZVEREN and WILLSKY 
[1990], OZVEREN, WILLSKY, and ANTSAKLIS [1991]. 
Finally, the discussion of the present paper is a continuation 
of the work presented in HAMMER [1993, 1994b, c, 1995 a, 
b, and 1996]. 

2. BASIC CONCEPTS 
2.1. Preliminaries. 

We deal with sequential machines that operate on vectors 
of integers. Denote by Z the set of integers, and by zm the 
set of all m-dimensional vectors with integer entries. Let 
sczm) be the set of all sequences (uo, u1, u2, ... ) of m-
dimensional integer vectors Uk E zm, k = 0, 1, 2, .... 
Given a sequence u E sczm), denote by Uk the k-th ele-

ment of the sequence, wher\ k 0 is an integer. For an in-
teger k 0, we denote by llo the list uo, u1, ... , Uk. 

A sequential machine that accepts sequences of m-dimen-
sional integer vectors as input and generates sequences of p-
dimensional integer vectors as output is simply a map L: 
S(Zm) S(ZP). In many cases, the set of input sequences 
accepted by L is restricted; For instance, L may only per-
mit input sequences whose amplitudes do not exceed a given 
bound. We denote by D:r the subset of S(zm) that consists 
of all sequences that are allowed to serve as input sequences 
of the system l:, and call D:r the input domain of L. In 
these terms, a sequential machine is represented by a map L : 
D:r S(ZP), where D:r c S(Zm) is the input domain of 
I.. Our main interest is in sequential machines I, that permit 
a recursive representation of the form (1.2). 

Let u be an input sequence of a system L, and let y := 
I.u kbe the corresponding output sequence. We denote by 
I.u]0 the list of output values YO, Yl, ... , Yk· 

A system L : D:r S(ZP) is causal (respectively, 
strictly causal) if the fo~owiig holds for all input sequences 
u, vkE D:r: !Z"henever llo = v0 tor1 some kntyger k 0, then 
l:u]0 = Lv]0 (respectively, fo] 0 + = l:v]0 + ). It can be read-
ily shown that a system with a recursive representation of the 
form (1.2) is strictly causal. A system M: D1 D2, where 
D1 c sczm) and D2 c S(ZP), is bicausal if it is a set iso-
morphism with both M and M-1 being causal. 

A subset .1 c zm is called an interval if it is of the form 
[a1,b1]x ... x[am,bm], where bi~ ai, i = 1, ... , m, are inte-
gers (and whence bounded). The interval .1 c zm induces an 
interval S(.1) in S(Zm), which consists of all sequences in 
S(Zm) whose elements belong to .1. Normally, the input 
domain of a sequential machine I, is an interval in sczm). 

A subset D C sczm) is bounded if it is contained in an 
interval. Similarly, a system L: D:r S(ZP) is bounded if 
its image Im I, is contained within an interval in S(ZP). 

In this paper the term functional norm refers to an as-
signment 1·1 that assigns a number lfl to each function f 
of a given class, with the following properties: (a) For every 
function f and variables u and v, one has lf(u) - f(v)I $; 
lfllu - vi; and (b) For every pair of functions f, g having ap-
propriate domain and codomain, the composition gf satisfies 
lgfl $; lgllfl. These properties make functional norms useful for 
the derivation of bounds on disturbance effects. 

Our main subject involves the investigation of sequential 
machines that are influenced by perturbations and distur-
bances. To quantify the size of a disturbance or its effect, we 
shall use the standard .e00 -norm. 

Given a vector v = (vl, ... , vm) E zm, we denote by lvl 
:= max {lvll, ... , lvml} the largest absolute value of a com-
ponent. For a sequence u = (uo, u1, ... ) E sczm), let 

lul := Supi~O luil 
denote the usual .e00 -norm. 



2.2 Disturbance attenuating systems. 
We consider now the effect of a disturbance of amplitude 

not exceeding o, where o > 0 is an integer. A system is 
"disturbance attenuating" if any input disturbance of ampli-
tude not exceeding o causes an output deviation of ampli-
tude not exceeding o. In this sense, the system "attenuates" 
the class of disturbances of amplitude not exceeding o. 
However, the output deviation caused by an input disturbance 
of amplitude less than o may exceed the disturbance ampli-
tude (but may not exceed o). This broader sense of distur-
bance attenuation is satisfactory in many applications, and it 
broadens the class of systems for which disturbance attenua-
tion can be achieved. The following notion is the basis of our 
discussion. 
(For a positive real number a > 0, denote by [a]+ the 
smallest integer that is not less than a.) 
(2.1) DEFINITION. Let g: L\in zP be a function defined 
over the non empty domain L\in c zm, and let o > 0 be an 
integer. The &gain functional norm lgl6 of g is defined by 
the integer 

I I ·= {[lgu - gu'I]+· d ·-[lu - u'I]+ .u, u' E L\in} g 6 . sup ...1s.-: • • - s.-: , , uu u U=1=U 

The function g is &attenuating if lgl6 ::; 1. + 
We adapt now the notion of o-gain functional norm to 

causal systems. First, we define two projections for every in-
teger k 0. One is the projection 
Pk: S(Zil) zn: Pk(uo, u1, ... ) := Uk 
that projects each sequence onto its k-th step; The second 
one is the projection 
Pk: S(Zn) (Zn)k+l : Pk(uo, u1, ... ) := (uo, ... , Uk) 
that projects each sequence onto its initial (k+ 1) elements. 
Now, consider a causal system L: Dl:: S(ZP) having the 
input domain Dl:: c S(zm). Since L is causal, it follows 
that the output value PkLU is determined by the input val-
ues Pku for any input sequence u E S(Zm). We can then 
define, for every integer k 0, a function 
(2.2) Llk : PkDl:: zP : LlkPku := PkLU 
defined for all points (uo, ... , Uk) E PkDl:: by the relation 
Llk(uo, ... , uk) := PkLU, where u E Dl:: is a sequence for 
which (uo, ... ,Uk)= Pku. The family {Llk} characterizes 
the causal structure of the system L. 
(2.3) DEFINITION. Let L : Dl:: S(ZP) be a causal sys-
tem having the non-empty input domain Dl:: c S(Zm), and 
let o > 0 be an integer. For every integer k 0, let IL1kl6 
be the o-gain functional norm of the function Llk of (2.2) 
induced by the system L. Then, the &gain functional norm 
ILl6 of L is defined by 

ILlo := supk o IL1klo. 
The system L is 8-attenuating if ILl0 ::; 1. • 

It can be shown that the o-gain functional norm fulfills 
the requirements for a functional norm (HAMMER [1996]. 

The construction of disturbance attenuating controllers 
depends in a critical way on our ability to extend the domain 
of functions without altering their o-gain functional norm. 
This need leads us to an adaptation to our present discrete 
setup of an analog of the Tietze Lemma on the extension of 
continuous functions. To be specific, let L : Dl:: D0 be a 
system having the bounded domain Dl:: c S(Zm). We show 
that, for any bounded domain D c S(Zm) containing Dl::, 
there is an extension Le: D D0 of L whose o-gain 
functional norm is equal to that of L. For notational sim-
plicity, we use the symbol L for the extension Le of L as 
well. 
(2.4) PROPOSITION. Let Dl:: c D c S(Zm) be non empty 
bounded domains, let D0 c S(ZP) be an interval, let o > 0 
be an integer, and let L: DL D0 be a causal system hav-
ing the o-gain functional norm 'Y := ILl0. Then, there is a 
causal extension L : D D0 of L whose o-gain func-
tional norm is still "(. 

3. DISTURBANCE ATTENUATION 
In the present section we derive necessary and sufficient 

conditions for the existence of a disturbance attenuating con-
troller for a given sequential machine L. The construction of 
an appropriate controller is described in HAMMER [1996]. 
The discussion is based on a theory of fraction representations 
of sequential machines developed in this section. 

We investigate the propagation of disturbances through 
the control configuration (1.1). Here, L: Dl:: S(ZP) is a 
given system, and C is a controller. Our main interest is in 
controllers C that guaranty disturbance attenuation for the 
closed loop system, where the term "disturbance attenuation" 
is discussed in detail below. In broad terms, disturbance at-
tenuation means that the deviation caused by a disturbance of 
amplitude o > 0 does not exceed o. 

The input domain of the closed loop system is denoted by 
Din, and it is required to be an interval in S(zm ). In this 
way, the closed loop system accepts any input sequence v 
whose element values stay within a prescribed range. For the 
sake of simplicity, we shall assume throughout our discus-
sion that the system L is strictly causal and the controller 
C is causal. This guaranties that (1.1) is well posed. We use 
the notation 
(3.1) y = :Ec(v,u1,u2,u3) 
to denote the response of the closed loop system to the exter-
nal signal v and the disturbances u1, u2, and u3. Since 
the configuration is well posed, the input signal u of L is 
uniquely determined by the external input signal v and the 
disturbances u1, u2, and u3, and we shall write 
(3.2) u = E(v,u1,u2,u3), 
where E is an appropriate system. It follows then directly 
that 



We shall also use the notation Eo(v) := E(v,0,0,0) and :Eco 
:= :Ec(v,0,0,0) to indicate the noise-free response of the cor-
responding systems. 

A frequent restriction on the controller C is that, for any 
output sequence y, the map C(v,y) be an injective (one to 
one) function of the external input sequence v. A controller 
that satisfies this requirement is called a reversible controller 
(see HAMMER [1989a] for a more detailed discussion). For 
example, an additive feedback controller is always reversible. 
In intuitive terms, a reversible controller passes on to the 
controlled system :E all the degrees of freedom available in 
the external input space Din, so as to allow maximal utiliza-
tion of the external input sequence to fine-tune the response 
of the closed loop system. 

We turn now to our investigation of the effects of the dis-
turbances u 1, u2, and u3 on the control configuration 
(1.1). We shall require for each of these disturbances that 
whenever their amplitude is bounded by o > 0, the deviation 
they cause in any of the internal or external signals of the 
configuration also be bounded by o. In this way we guaranty 
that the entire control configuration is not disturbed beyond a 
permissible bound. This requirement leads to the following 
notion of disturbance attenuation, which is in the spirit of the 
definition of internal stability used in nonlinear control the-
ory. 
(3.3) DEFINITION. Let o > 0 be an integer. The configura-
tion (1.1) has a disturbance attenuation radius of o if, for 
any disturbances u1, u3 E S(Zm) and u2 E S(ZP) satisfy-
ing lu1 I o, lu2I o, and lu3l o, and for any external in-
put sequence v satisfying v+u3 E Din, the following hold: 
(Here E is given by (3.2) and :Ee is given by (3.1).) 
(i) IE(v+u3,0,0) - E(v,0,0)1 o, 
(ii) IE(v,u1,0) - E(v,0,0)1 o, 
(iii) IE(u,O,u2) - E(u,0,0)1 o; 
(iv) l:Ec(v+u3,0,0) - Lc(v,0,0)1 o, 
(v) l:Ec(v,u1,0) - :Ec(v,0,0)1 o, 
(vi) l:Ec(u,O,u2) - Lc(u,0,0)1 o. • 

A disturbance attenuating control configuration gives rise 
to a particular fraction representation of the system :E being 
controlled, as follows. 
(3.4) PROPOSITION. Let :E : D:r S(ZP) be a strictly 
causal system, with the input domain Dr c S(Zm). Assume 
there is a causal reversible controller C : DinXS(ZP) 
S(Zm) for which the closed loop system (1.1) has distur-
bance attenuation radius o > 0. Then, the system :E has a 
right fraction representation :E = ST-1, where S : Din 
S(ZP) and T: Din~ Im Tc S(Zm) are causal a-attenuat-
ing systems. 

Proposition (3.4) is critical for the construction of distur-
bance attenuating controllers (HAMMER [1996]). 

We continue now with our qualitative discussion of the 
effect of the disturbances u1, u2, and u3 on the configura-
tion (1.1). So far, we have imposed the requirement that 

small disturbances cause only small deviations of the signals 
u and y. It is also important to address the question of 
whether or not it is possible to correct for these deviations, as 
small as they may be, through small changes in the external 
input sequence v. To be more specific, assume that the con-
figuration has a disturbance attenuation radius o > 0, and 
consider, for example, a persistent (constant) disturbance u1 
of amplitude not exceeding o. Since the closed loop system 
has a disturbance attenuation radius of o, the deviation of the 
signals u and y caused by this disturbance will not exceed 
o. Nevertheless, a deviation has occurred. It would be natural 
to demand that it be possible to counteract this deviation (and 
return the signals u and y to their undisturbed values) by 
making a "small" adjustment to the external input signal v 
of the closed loop system. In broader terms, we shall require 
that it be possible to cancel the effect of any (known) distur-
bance signal of amplitude not exceeding do, by a applying an 
adjustment of magnitude not exceeding do to the external 
input sequence v, where d 2:: I is any integer. This leads to 
the following. 
(3.5) DEFINITION. Let o > 0 be an integer. For a pair of 
input sequences u, u' of :E in (1.1), denote by y := :Eu and 
y' := :Eu' the corresponding output sequences. Then, the con-
figuration (1.1) with a reversible controller C is strictly dis-
turbance attenuating with radius o > 0 if the following hold. 
(i) The configuration has a disturbance attenuation radius of 
o;and 
(ii) Whenever lu - u'I do and ly - y'I do for some inte-
ger d 2:: 1, there are external input sequences v, v' E Din for 
which u = Eov, u' = Eov', and Iv - v'I do. + 

We briefly interrupt our examination of disturbance atten-
uation in order to review the notion of a graph. 

Let :E : D:r S(ZP) : u H :Eu be a strictly causal sys-
tem with the non-empty input domain D:r c S(Zm). As 
usual, the graph G:r of I: is a subset of the cross product 
space S(ZP)xS(Zm), consisting of all pairs (:Eu,u), u E D:r. 
The graph of the system I: plays an important role in our 
discussion, compatible with its role in the general theory of 
nonlinear control systems over topological spaces 
(HAMMER [1984a], [1985]). Proposition (3.4) has certain 
implications on the structure of the graph of I:, as we dis-
cuss next. 

First, we need some terminology. A system M for 
which M and M-1 are both a-attenuating is called a o-
unimodular system, or a a-homeomorphism. A subset r c 
G:r is a-homeomorphic to a subset D c S(Zm) if there is a 
bicausal and o-unimodular set isomorphism M : D r. 

Assume there is a causal reversible controller C : 
DinXS(ZP) sczm), where Din C S(ZID) is an interval, 
for which the control configuration (I. I) around the given 
system :E has a disturbance attenuation radius o > 0. Then, 
as Proposition 3.4 indicates, there is a right fraction represen-
tation I: = ST-1, where S : Din S(ZP) and T : Din 
Im T are o-attenuating causal systems. For every sequence 



v E Din, the sequences u := Tv and y := Sv satisfy y = 
Sv = (ST-1 )Tv = l:Tv = l:u, so that the pair (Sv,Tv) = 
(fo,u) is a point of the graph of l:. Consequently, the set 

r = ( (Sv,Tv), VE Din} 
is a subset of the graph G:r of l:. Define the map 

M :=Din~ r: Mv := (Sv,Tv). 
We claim that M is a set isomorphism. Indeed, M is sur-
jective (onto) by the definition of the set r, and it is injec-
tive since T is injective. Furthermore, the fact that S and 
T are both o-attenuating causal systems implies that M is 
a o-attenuating causal system as well. Taking into account 
strict disturbance attenuation, it can be shown that M is in 
fact a o-unimodular system. Furthermore, the converse of 
this fact is also true, namely, if the graph of l: contains a 
subset that is o-homeomorphic to an interval, then there is a 
controller for l: that provides strict disturbance attenuation, 
as follows. 
(3.6) THEOREM. Let l: : D:r S(ZP) be a strictly causal 
system with the non-empty input domain DI; C sczm), and 
let o > O be an integer. Assume there is a bounded subset r 
of the graph of l: that is o-homeomorphic to an interval 
Din c S(Zm). Then, there is a causal reversible controller C 
for which the configuration (I.I) around l: is strictly distur-
bance attenuating with radius o, and has the external input 
domain Din· 

Moreover, the o-homeomorphism of Theorem 3.6 can be 
directly used to construct a controller that yields strict distur-
bance attenuation for the system l: (see HAMMER 
[1996]).Thus, the existence of a subset of the graph of l: 
that is homeomorphic to an interval is a necessary and suffi-
cient condition for strict disturbance attenuation. This fact is 
closely analogous to the situation encountered in the theory 
of robust stabilization of nonlinear systems over topological 
spaces (HAMMER [I989b]), and can be viewed as a general 
principle of control theory. 
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