

Abstract—The existence of state-feedback controllers

that eliminate the effects of infinite cycles on asynchro-

nous sequential machines is considered. The main objec-

tive is to develop controllers that stop infinite cycles in an

existing machine, while controlling the machine to match

a prescribed model. Necessary and sufficient conditions

for the existence of such controllers are stated in terms of

a simple test applied to a certain numerical matrix.

I. INTRODUCTION

SYNCHRONOUS sequential machines are common

building blocks of high-speed computing equipment.

Asynchronous machines can be afflicted by infinite cycles,

which cause a machine to loop indefinitely among several

of its states. Infinite cycles are caused by malfunctions,

design flaws, component failures, or implementation

flaws. This note presents state-feedback controllers that

overcome the effects of infinite cycles on existing asyn-

chronous machines. These controllers achieve two objec-

tives: (i) the controlled machine does not linger in an infi-

nite cycle; and (ii) the performance of the controlled ma-

chine matches a desired model.

 (1)

Here, Σ is the faulty asynchronous machine being con-

trolled, and C is an asynchronous machine serving as a

controller. The closed loop machine is denoted by Σc. The

controller can be designed so that the closed loop system

will function properly before, as well as after, an infinite

Niranjan Venkatraman is with the Department of Electrical Engineer-

ing, Northern Arizona University, Flagstaff, AZ 86011, USA (phone:

928-523-0373; e-mail: v.niranjan@ieee.org).

Jacob Hammer is with the Department of Electrical and Computer

Engineering, University of Florida, Gainesville, FL 32611, USA (phone:

352-392-4934; e-mail: hammer@mst.ufl.edu).

cycle appears in Σ. In other words, the controller can

serve as a preemptive measure against malfunctions, im-

proving system reliability. For machines with existing

infinite cycles, the use of a controller is often economi-

cally more efficient than replacing a faulty machine. It is

the only practical solution when the affected machine is

inaccessible.

The existence of a controller depends on certain reach-

ability properties of the faulty machine Σ. These proper-

ties can be characterized in terms of a numerical matrix of

zeros and ones, called the "skeleton matrix" of Σ (§IV).

The skeleton matrix determines whether the control objec-

tive can be achieved; its derivation is based on the theory

of stable realizations of [15] and [16]. A stable realization

represents every persistent status of a machine and the

transitions from one persistent status to another.

This note continues [6], [7], [8], [9], [10], [11], [12],

[4], and [5]. Studies dealing with other aspects of the con-

trol of discrete event systems can be found in [13], [2],

[14], [1], [3], and others. The existing literature about infi-

nite cycles of asynchronous machines deals with tech-

niques for the design and implementation of machines that

are free of infinite cycles. There seem to be no reports

regarding the use of controllers to eliminate the effects of

infinite cycles in an existing machine.

II. TERMINOLOGY AND BACKGROUND

For a finite non-empty alphabet A, let A* be the set of

all finite strings of characters of A, and let A
+
 be the set

of all non-empty strings in A*. Assume that A does not

include the digits 0 and 1. The length |w| of a string w

∈ A* is the number of characters of w. A partial function

f : S1 → S2 is a function defined over a subset of S1.

An asynchronous machine Σ is a sextuple

(A,Y,X,x0,f,h), where A, Y, and X are alphabets, x0 is

the initial state, and f : X×A→X and h : X×A→Y are

partial functions. Here, A is the input alphabet, Y is the

output alphabet, and X is the set of states; f is the recur-

sion function and h is the output function. A valid pair

(x,u) ∈ X×A is a point at which f and h are defined.

The machine Σ accepts input strings u := u0 u1 ... ∈

A*; in response, it generates a string of states x0x1x2 … ∈

X* and a string of output values y0y1y2 ... ∈ Y*, accord-

Controllers for Asynchronous Sequential

Machines with Infinite Cycles

Niranjan Venkatraman and Jacob Hammer

A

C
v Σ

y

Σc

u

Proceedings of the 17th International Symposium on
Mathematical Theory of Networks and Systems, Kyoto, Japan, 2006

ing to

xk+1 = f(xk,uk)‚

yk = h(xk,uk)‚ k = 0‚ 1‚ 2‚ …

An input sequence is permissible if all pairs (xk,uk), k ≥ 0,

are valid pairs. The step counter k is incremented by one

at every change of the input or of the state. The machine

Σ is an input/state machine if the output is equal to the

state, i.e., yk = xk, k ≥ 0. An input/state machine Σ is rep-

resented by the triple (A,X,f), allowing for an arbitrary

initial state.

A valid pair (x,u) ∈ X×A of Σ is a stable combination

if f(x,u) = x, i.e., if the state x is a fixed point of f. A

machine lingers at a stable combination until an input

change occurs. A pair (x,u) that is not a stable combina-

tion is a transient combination. A state is potentially stable

if it has a stable combination. States that are not poten-

tially stable are invisible to the user, since the machine can

never linger at them. It is customary to ignore states that

are not potentially stable.

A transient pair (x,u) initiates a chain of transitions x1

= f(x,u), x2 = f(x1,u), ..., where the input character u is

kept fixed. If this chain of transitions ends, then there is an

integer q ≥ 1 such that the state x′ := f(xq,u) of the chain

satisfies x′ = f(x′,u), i.e., (x′,u) is a stable combination.

Then, x′ is called the next stable state of x with the input

value u. If this chain of transitions does not terminate,

then the pair (x,u) is part of an infinite cycle.

If the input of an asynchronous machine changes while

the machine is undergoing transitions, the machine's re-

sponse may become unpredictable, since the state at the

time of the input change is unpredictable. To avoid this

uncertainty, asynchronous machines are normally operated

in fundamental mode, where only one variable of the ma-

chine is allowed to change at a time. In fundamental mode

operation, a change of the input is allowed only while the

machine is in a stable combination. For configuration (1),

this means that the output of C must remain constant

while Σ is undergoing transitions; and the output of Σ

must remain constant while C is undergoing transitions.

Fundamental mode operation is impossible when a ma-

chine is in an infinite cycle, since, in order to take the ma-

chine out of the infinite cycle, the machine's input must be

changed during the course of the cycle. The outcome of

such an input change may be unpredictable. In this note,

asynchronous machines operate in fundamental mode in

all cases, except during an infinite cycle, as follows.

(2) DEFINITION. An asynchronous machine Σ operates

in semi-fundamental mode, if it operates in fundamental

mode when not in an infinite cycle. ♦

I. GENERALIZED REALIZATIONS

Consider a machine Σ with the state set X = {x
1
, x

2
,

..., x
n
} and the recursion function f. An infinite cycle χ =

{xj1, xj2, ..., xjp; a} of Σ with the input character a and

the states xj1, xj2, ..., xjp is described by

xjk+1 = f(xjk,a)‚ k = 1‚ ...‚ p–1‚

xj1 = f(xjp‚a).

The state set of χ is X(χ) := {xj1, xj2, ..., xjp}.

 The length l of the infinite cycle χ is the number of

distinct states it includes, i.e., l = p in this case. When the

length of an infinite cycle is 1, say χ = {x; a}, then we

have x = f(x,a), i.e., (x,a) is stable combination of Σ.

Thus, an infinite cycle of length 1 is a stable combina-

tion. In the sequel, unless specifically stated otherwise,

"infinite cycle" refers to an infinite cycle of length greater

than 1.

Let (x,u) be a valid pair of the machine Σ =

(A,X,Y,x0,f,h), and assume it has a next stable state x′.

The stable recursion function s : X×A→X of Σ is de-

fined by setting s(x,u) := x′ for every valid pair (x,u)

that has a next stable state. When s is used as a recursion

function, it induces the stable-state machine Σ|s =

(A,X,Y,x0,s,h).

When Σ has infinite cycles, being in an infinite cycle is

clearly a persistent status of the machine, and this status is

definitely experienced by the machine's user. The notion

of stable-state machine is generalized to take this fact into

account, as follows (see [15] and [16] for details).

(3) DEFINITION. Let Σ be an asynchronous machine

with the state set X = {x
1
, ..., x

n
} and t > 0 infinite cy-

cles χ1, ..., χt of length greater than 1. With each infinite

cycle χi, associate a new state x
n+i

, called a cycle state.

The set X̃ := {x
1
, ..., x

n
, x

n+1
, ..., x

n+t
} is the augmented

state set of Σ; its elements are the generalized states of Σ.

A pair (x,u) ∈ X̃×A is a generalized valid pair of Σ if

one of the following holds: (i) x ∈ X and (x,u) is a valid

pair of Σ; or (ii) x = x
n+i

 for an integer i ∈ {1, ..., t} and

u forms a valid pair with each state of the infinite cycle

χi.

A pair (x,u) ∈ X̃×A is a generalized stable combination

if one of the following holds: (i) x ∈ X and (x,u) is a

stable combination of Σ; or (ii) x = x
n+i

 for an integer i

∈ {1, ..., t} and u is the input character of the infinite

cycle χi. ♦

Thus, every persistent status of an asynchronous ma-

chine (a stable combination or an infinite cycle) is de-

scribed by a generalized stable combination.

(4) EXAMPLE. Consider the machine Σ with the input

set A = {a, b, c}, the state set X = {x
1
, x

2
, x

3
}, and the

transition function f given by the state transition table:

 a b c

x
1
 x

1
 x

3
 x

1

x
2
 x

2
 x

3
 x

3

x
3
 x

2
 x

2
 x

3

This machine has one infinite cycle of length bigger than

one: χ1 := {x
2
, x

3
; b}. With this infinite cycle, associate a

cycle state x
4
. The augmented state set of Σ is then X̃ =

{x
1
, x

2
, x

3
, x

4
}. The generalized stable combinations of Σ

are (x
4
,b), (x

1
,a), (x

2
,a), (x

1
,c), and (x

3
,c). ♦

We introduce now a new recursion function over the

augmented state set X̃ = {x
1
, ..., x

n+t
} of a machine Σ =

(A,Y,X,x0,f,h). Let χ1, ..., χt be the infinite cycles of Σ.

First, define a partial function s
e
 : X×A → X̃ over all

valid pairs (x,u) ∈ X×A of Σ by setting

s
e
(x,u) =



s(x,u) if (x,u) has a next stable state‚

x
n+i

 if (f(x,u),u) is a pair of the infinite cycle χi.

Recall that X(χ) denotes the set of states included in an

infinite cycle χ. Let u be an input character that forms

valid pairs with all states of X(χ). Denote by s
e
[X(χ),u]

the image of the set X(χ)×u through s
e
, namely,

 s
e
[X(χ),u] := {x′ ∈ X̃ : x′ = s

e
(x,u) and x ∈ X(χ)}.

Note that s
e
[X(χ),u] can be a single state or a set of

states, depending on X(χ) and on u. The following no-

tion is critical to the control of asynchronous machines

with infinite cycles. It defines a function whose values are

subsets of X̃. When the value consists of a single element

x of X̃, we shall drop the (formal) distinction between the

element x ∈ X̃ and the subset {x} ⊂ X̃.

(5) DEFINITION. Let Σ = (A,Y,X,x0,f,h) be an asyn-

chronous machine with the infinite cycles χ1, ..., χt and

the augmented state set X̃ = {x
1
, ..., x

n+t
}. Denote by P(X̃)

the set of all subsets of X̃. The generalized stable recur-

sion function s : X̃×A → P(X̃) of Σ is defined over all

generalized valid pairs (x,u) ∈ X̃×A of Σ by

 s(x,u) := 

s

e
(x‚u) if x ∈ X‚

s
e
[X(χi)‚u] if x = x

n+i
‚ i = 1‚ ...‚ t.

The generalized stable-state machine Σ|s = (A,X̃,s) of Σ

is an input/state machine with the state set X̃ and the re-

cursion function s. ♦

(6) EXAMPLE. A direct examination shows that the gen-

eralized stable recursion function s of the machine Σ of

Example 4 is given by

 a b c

x
1
 x

1
 x

4
 x

1

x
2
 x

2
 x

4
 x

3

x
3
 x

2
 x

4
 x

3

x
4
 x

2
 x

4
 x

3

Note that stable combinations of the generalized stable

state machine Σ|s represent either stable combinations of

the original machine Σ or infinite cycles of Σ. This leads

to the following conclusion, which motivates the use of

generalized stable state machines ([15], [16]).

(7) PROPOSITION. Semi-fundamental mode operation of

a machine Σ is equivalent to fundamental mode operation

of its generalized stable state machine Σ|s. ♦

The following relates to a basic concept of Automata

theory (compare to [11], [12], [4], and [5]).

(8) DEFINITION. Let Σ = (A,Y,X,x0,f,h) and Σ′ =

(A,Y,X′,ζ0,f′,h′) be two machines having the same input

and the same output sets, and let Σ|s and Σ′|s be the gen-

eralized stable state machines of Σ and Σ′, respectively.

Two states x ∈ X and ζ ∈ X′ are stably equivalent (x ≡

ζ) if the following is true: When Σ|s starts from the state

x and Σ′|s starts from the state ζ, then (i) Σ|s and Σ′|s

have the same permissible input strings; and (ii) Σ|s and

Σ′|s generate the same output string for every permissible

input string. Two machines Σ and Σ′ are stably equiva-

lent if their initial states are stably equivalent, i.e., if x0 ≡

ζ0; in such case, we write Σ = Σ′. ♦

 Stably equivalent machines appear identical to a user.

II. THE SKELETON MATRIX

Consider again the generalizes stable state machine Σ|s

= (A,X̃,s) with the generalized state set X̃ = {x
1
, ..., x

n+t
}

and the generalized stable recursion function s. Recall that

a critical race is a transition whose outcome is not

uniquely predetermined. Assume that the input string u ∈

A
+
, when applied at the generalized state x

j
 of Σ|s, creates

a critical race with the outcomes x
p
 and x

q
, p ≠ q. As-

sume further that there are input strings that take Σ|s from

these states to a common target state x
s
 via deterministic

transitions. Namely, assume that there are input strings u
1
,

u
2
 ∈ A

+
, where u

1
 takes Σ|s from x

p
 to x

s
 deterministi-

cally, while u
2
 takes Σ|s from x

q
 to x

s
 deterministi-

cally; i.e., x
s
 = s(x

p
,u

1
) = s(x

q
,u

2
). Then, by using state-

feedback control, we can induce a deterministic transition

from x
j
 to x

s
 as follows: apply the input string u at the

state x
j
, and check the outcome. If the outcome is x

p
, then

continue with the input string u
1
; if the outcome is x

q
,

then continue with the input string u
2
. This leads to the

deterministic (i.e., unique) outcome x
s
, masking the ef-

fects of the critical race along the way. Note that all transi-

tions are in semi-fundamental mode operation. To general-

ize, we need the following concept. (Let Πx : X̃×A → X̃ :

Πx(x,u) = x be the standard projection onto X̃.)

(9) DEFINITION. Let Σ be an asynchronous machine

inducing the generalized stable state machine Σ|s = (A,X̃

,s), where X̃ = {x
1
, ..., x

n+t
}. A feedback trajectory from

the generalized state x
j
 to the generalized state x

i
 is a list

{S0, S1, S2, ..., Sp} of sets of valid pairs of Σ|s with the

following properties:

(i) S0 = {(x
j
,u0)}, where u0 is a character of A;

(ii) s[Sα] ⊂ Πx[Sα+1], α = 0, ..., p–1;

(iii) s[Sp] = {x
i
}. ♦

(10) EXAMPLE. A feedback trajectory from x
1
 to x

2
 for

the generalized stable state machine Σ|s of Example 6 is

S0 = {(x
1
,b)}, S1 = {(x

4
,a)}, S2 = {(x

2
,a)}. ♦

 The argument of the first paragraph of this section can

be readily generalized to a proof of the next statement,

♦

which shows that feedback trajectories characterize the

existence of feedback controllers.

(11) PROPOSITION. Let x
j
 and x

i
 be generalized states

of a machine Σ. The following are equivalent.

(a) There is a state feedback controller that induces a de-

terministic transition from x
j
 to x

i
 in semi-fundamental

mode operation.

(b) There is a feedback trajectory from x
j
 to x

i
. ♦

The following notion plays an important role.

(12) DEFINITION. Let Σ be an asynchronous machine

with the augmented state set X̃ and the generalized stable

recursion function s. A generalized state x′ ∈ X̃ is stably

reachable from a generalized state x ∈ X̃ if there is a

input string u = u0u1…uk of Σ for which x′ ∈ s(x,u). ♦

To perform computations related to stable reachability,

we need the following matrix (see [15] and [16] for de-

tails).

(13) DEFINITION. Let Σ|s = (A,X̃,s) be a generalized

stable state machine with the augmented state set X̃ = {x
1
,

..., x
n+t

}. Denote by s*(x
i
,x

j
) the set of all input characters

u ∈ A for which x
i
 ∈ s(x

j
,u), and let N be a character

not included in the alphabet A. Then, the matrix of one-

step generalized stable transitions R(Σ|s) is an

(n+t)×(n+t) matrix whose (i,j) entry is given by

Rij(Σ|s) = 

s*(x

i
,x

j
) if s*(x

i
,x

j
) ≠ ∅‚

N otherwise‚ i‚ j = 1‚ ...‚ n+t.
 ♦

The matrix R(Σ|s) characterizes all one step transitions

of Σ|s. Its (i,j) entry, if not N, consists of all (single) in-

put characters that take Σ|s from x
j
 to a generalized sta-

ble combination with x
i
. An (i,j) entry of N indicates

that Σ|s cannot be driven from x
j
 to a generalized stable

combination with x
i
 by applying a single input character.

Recall that A* is the set of strings of characters of A.

We describe now two operations on the matrix R(Σ|s).

First, an operation that mimics matrix addition ([11] and

[12]). Let wi be a subset of strings or the character N, i =

1, 2. The operation U⁄ of unison is defined by

 w1 U⁄ w2 :=





w1 U w2 if w1 ⊂ A* and w2 ⊂ A*‚

w1 if w1 ⊂ A* and w2 = N‚

w2 if w1 = N and w2 ⊂ A*‚

N if w1 = w2 = N.

Here, N is treated like the empty set it represents. For

n×n matrices, unison is entrywise: Cij := Aij U⁄ Bij, i, j = 1,

..., n.

Concatenation of strings w1, w2 ∈ A* U N is given by

 conc(w1,w2) := 

w2w1 if w1‚ w2 ∈ A*‚

N if w1 = N or w2 = N.

More generally, let W = {w1, w2, …, wq} and V = {v1,

v2, …, vr} be two subsets, whose elements are either

strings of A* or the character N. Define

 conc(W,V):= U⁄ i=1‚...‚q
j=1‚...‚r

 conc(wi,vj).

Note that the concatenation result is either a subset of A*

or the character N, and N takes the role of a "zero". The

product Z := CD of two n×n matrices C and D is an

n×n matrix with the entries

 Zij := U⁄
n
k=1

 conc(Cik,Dkj), i,j = 1, …, n.

Using this product, we can define the powers

 R
q
(Σ|s) := R

q–1
(Σ|s)R(Σ|s), q = 2, 3, ...

If not N, the (i,j) entry of R
q
(Σ|s) consists of all input

strings that may take x
j
 to a generalized stable combina-

tion with x
i
 in q generalized stable transitions (these

transitions may not be deterministic). Define

 R
(q)

(Σ|s) := U⁄

p=1...q

 R
p
(Σ|s), q = 2, 3, ...

If not N, the (i,j) entry of R
(q)

(Σ|s) consists of all strings

that may take the machine Σ|s from x
j
 to a generalized

stable combination with x
i
 in q or fewer generalized

stable transitions (these transitions may not be determinis-

tic). The next fact's proof is similar to [[12] Lemma 3.9].

(14) LEMMA. Let Σ be an asynchronous machine with n

states, t infinite cycles, and the generalized stable-state

machine Σ|s. The following two statements are equivalent:

(i) The generalized state x
i
 is stably reachable from the

generalized state x
j
.

(ii) The (i,j) entry of R
(n+t–1)

(Σ|s) is not N. ♦

Thus, the matrix R
(n+t–1)

(Σ|s) characterizes all transi-

tions possible for the generalized stable-state machine Σ|s.

In the matrix R(Σ|s), a critical race is represented by the

presence of an input character u in more than one entry

of a column, as this indicates that the input character u

transits the state corresponding to that column to several

different outcomes. This leads to the following.

(15) PROPOSITION. Let R(Σ|s) be the one-step matrix of

stable transitions of a machine Σ with n states and t

infinite cycles. Then, the following are equivalent for all

input strings u ∈ A
+
 and for all j = 1, ..., n+t.

(i) Applying u at the generalized state x
j
 results in a

critical race.

(ii) The string u appears in more than one entry of col-

umn j of the matrix R
(n+t–1)

(Σ|s). ♦

The next algorithm characterizes all pairs of generalized

states that are connected by a feedback trajectory. It oper-

ates on the matrix of one-step generalized stable transi-

tions, gradually transforming it into a numerical matrix of

zeros and ones. In the resulting matrix, an entry of 1 ap-

pears in position (i,j) if and only if there is a feedback

trajectory from x
j
 to x

i
. This characterizes all the ways in

which state feedback controllers can affect a machine Σ.

We define a meet operation on strings of A
+
 and the

digits 0 and 1. Let ω be a character not in A. Set

 0 ∧ 0 := 0, 0 ∧ 1 = 1 ∧ 0 := 0, 1 ∧ 1 := 1,

 0 ∧ a = a ∧ 0 := 0, 1 ∧ a = a ∧ 1 := ω, for all a ∈ A
+
.

The meet of two vectors is defined entrywise, e.g.,

 (1,1,0,a,0) ∧ (1,0,0,1,a) = (1,0,0,ω,0).

(16) ALGORITHM. Let R(Σ|s) be the matrix of one-step

generalized stable transitions of Σ. Compute R
(n+t–1)

(Σ|s).

Step 1. Replace all entries of N in the matrix R
(n+t–1)

(Σ|s)

by the digit 0; denote the resulting matrix by K
1
.

Step 2. Perform (a), (b), (c), and (d) below for each i, j =

1, ..., n+t; then, continue to (e):

(a) If the (i,j) entry K
1
ij of K

1
 includes a string of A

+

that does not appear in any other entry of the same column

j, then:

(b) Delete the strings included in K
1
ij from all entries of

column j of K
1
.

(c) Replace all resulting empty entries by the digit 0.

(d) Replace entry K
1
ij by the digit 1.

(e) Denote the resulting matrix by K′(1). Delete from

K′(1) all strings of A
+
 whose length is greater than 1.

Replace all empty entries by the digit 0. Denote the result-

ing matrix by K(1). Set k := 1, α := 1.

Step 3. If k = n+t+1, then perform the following:

(a) Set Kα(Σ) := K(k).

(b) If α ≥ 2 and Kα(Σ) = Kα–1(Σ), then replace by 0 all

entries of Kα(Σ) that are not 1; denote the resulting ma-

trix by Kg(Σ), and terminate the algorithm. Otherwise,

replace α by α+1, set k := 1, and continue to Step 4.

Step 4. If all entries of column k of the matrix K(k) are

1 or 0, then set K(k+1) := K(k), and repeat from Step 3

with the value k+1 for k. Otherwise, proceed to Step 5.

Step 5. (a) If the character u ∈ A appears in column k of

K(k), then let i1, i2, ..., iq be the rows of column k of

K(k) that include u. Denote by J(u) the meet of columns

i1, i2, ..., iq of the matrix K(k).

(b) If J(u) has no entries other than 0 or 1, then delete u

from all entries of column k of the matrix K(k); set all

empty entries to the value 0. Continue to (c).

(c) If J(u) has no entries of 1, then return to Step 4. Oth-

erwise, continue to (d).

(d) If J(u) has entries of 1, let j1, ..., jr be the entries of

J(u) having the value 1. Let S(k) be the set of columns

of K(k) that consists of column k and of every column

that has the digit 1 in row k. In K(k), perform the fol-

lowing operations on every column of S(k):

(1) Delete from the column all occurrences of input char-

acters that appear in rows j1, ..., jr of the column.

(2) Replace rows j1, ..., jr of the column by the digit 1.

(3) If any entries of K(k) remain empty, then replace them

by the digit 0. Return to Step 4. ♦

(17) DEFINITION. The outcome Kg(Σ) of Algorithm 16

is called the generalized skeleton matrix of Σ. ♦

(18) EXAMPLE. For the machine of Example 6,

 R(Σ|s) =









{a‚c} N N N

N a a a

N c c c

b b b b

 and Algorithm 16 yields

 Kg(Σ) =









1 0 0 0

1 1 1 1

1 1 1 1

1 1 1 1

. ♦ (19)

The next fact indicates the significance of Algorithm

16.

(20) PROPOSITION. Let Kg(Σ) be the generalized skele-

ton matrix of Σ, and let x
i
 and x

j
 be two generalized

states of Σ. Then, the following are equivalent.

(i) There is a feedback trajectory from x
j
 to x

i
.

(ii) The (i,j) entry of Kg(Σ) is 1.

Proof. Let s be the generalized stable recursion func-

tion of Σ. Assume that there is a feedback trajectory S0,

S1, ... Sp from x
j
 to x

i
. By the definition of feedback

trajectory, Sk = {(x
i(1,k)

,u(1,k)), ..., (x
i(q(k),k)

,u(q(k),k))}, k =

1, ..., p–1, S0 = {(x
j
,u)}, s[Sp] = x

i
, and s(x

i(r,k)
,u(r,k)) ∈

Πx[Sk+1], r = 1, ..., q(k), k = 0, ..., p–1. Applying Step 5 of

Algorithm 16 recursively at each of the steps k = p, p–1,

..., 1 (reverse order), while using the previous relations,

shows that Kg(Σ) has an entry of 1 in position (i,j).

Thus, (i) entails (ii).

Conversely, assume that there is an entry of 1 in posi-

tion (i,j) of Kg(Σ). Consider first the matrix K(1) of

Algorithm 16. By construction, an entry of 1 in position

(i,j) of K(1) indicates the existence of a deterministic

transition from x
j
 to x

i
. Next, referring to Step 5 of Algo-

rithm 16, let k0 be the first value of k at which the con-

dition of Step 5(a) of Algorithm 16 is satisfied. Then, Σ

has the critical race s(x
k0,u) = {x

i1, ..., x
iq}. By the con-

struction of J(u) in Step 5(d) of Algorithm 16, it follows

that an entry of 1 in row j of J(u) indicates that there is

a deterministic transition from each one of the generalized

states x
i1, ..., x

iq to the generalized state x
j
. Recalling the

first paragraph of section IV, this implies the existence of

a feedback trajectory from x
k0 to x

j
. Applying similar

reasoning recursively at every cycle of Algorithm 16, we

conclude that an entry of 1 in position (i,j) of Kg(Σ)

implies the existence of a feedback trajectory from x
j
 to

x
i
. Finally, if α ≥ 2 and Kα(Σ) = Kα–1(Σ) in Step 3(b) of

Algorithm 16, then any strings of A
+
 present in Kα(Σ)

involve critical races whose outcomes cannot be guided

toward a single state via a feedback trajectory. Thus, (ii)

implies (i). ♦

The generalized skeleton matrix plays a critical role in

our discussion, reminiscent of the role played by the skele-

ton matrix in [11], [12], [4], and [5]. Combining Proposi-

tions 7, 11, and 20, leads us to one of the main results of

this note: a characterization of all possibilities of control-

ling an asynchronous machine.

(21) THEOREM. Let Σ be a machine with the general-

ized skeleton matrix Kg(Σ), and let x
i
 and x

j
 be two

generalized states of Σ. The following are equivalent.

(a) There is a feedback controller that takes Σ from x
j
 to

x
i
 in semi-fundamental mode operation.

(b) The (i,j) entry of Kg(Σ) is 1. ♦

III. THE MODEL MATCHING PROBLEM

(22) PROBLEM. Let Σ and Σ′ be input/state machines

having the same input and the same output alphabets,

where Σ′ is a stable-state machine. Find necessary and

sufficient conditions for the existence of a controller C

for which the generalized stable-state machine Σc|s is sta-

bly equivalent to Σ′ for all initial conditions. ♦

The controller C of Problem 22 makes the closed loop

system imitate the behavior of Σ′. The machine Σ′ is

called the model, and it has no infinite cycles. Thus, when

model matching is achieved, the controller C eliminates

the effects of the infinite cycles of Σ, in addition to induc-

ing desirable dynamical behavior.

Once the controller C has been activated, there is no

more interest in transitions of Σ that either start or end at

generalized stable combinations with cycle states, since

these would indicate the presence of persistent infinite

cycles in the closed loop system. Now, transitions that

start at generalized stable combinations with cycle states

are represented by the last t columns of Kg(Σ), while

transitions that terminate at generalized stable combina-

tions with cycle states are represented by the last t rows

of Kg(Σ). Thus, for design purposes, the last t rows and

the last t columns of Kg(Σ) can be deleted (however,

these are critical during the construction of Kg(Σ)).

(23) DEFINITION. Let Σ be an asynchronous machine

with n states and t infinite cycles. The skeleton matrix

K(Σ) is obtained by deleting the last t rows and the last t

columns of the generalized skeleton matrix Kg(Σ). ♦

The entries of the skeleton matrix may still include tran-

sitions that pass transiently through infinite cycles. Only

transitions that start or end at infinite cycles are elimi-

nated.

(24) EXAMPLE. For Kg(Σ) of (19),

 K(Σ) = 





1 0 0

1 1 1

1 1 1
. ♦

We can now to state a solution of the Model Matching

Problem 22. Clearly, simulating the behavior of the model

Σ′ means finding a controller C for which the general-

ized stable state machine Σc|s has the same transitions as

the model Σ′. All possible transitions of Σ′ are repre-

sented by entries of 1 in its skeleton matrix K(Σ′). Con-

sider, for example, one of these entries: suppose that

K(Σ′) has an entry of 1 in position (i,j). This indicates

that Σ′ has a stable-state transition from the state x
j
 to

the state x
i
. Then, for Σc|s to emulate Σ′, the controller C

must drive Σ to perform a similar transition in semi-

fundamental mode, i.e., a transition from x
j
 to x

i
. In view

of Theorem 21, the latter is possible if and only if the

skeleton matrix K(Σ) has an entry of 1 in position (i,j).

In other words, the model matching problem has a solution

if an only if K(Σ) has an entry of 1 in each position in

which K(Σ′) has an entry of 1. As entries of K(Σ) or of

K(Σ′) can only be 0 or 1, this leads to the following.

(Given two n×n numerical matrices A and B, the ine-

quality A ≥ B is interpreted entrywise, i.e., Aij ≥ Bij for

all i, j = 1, ..., n.)

(25) THEOREM. Let Σ be an input/state machine with

the skeleton matrix K(Σ), and let Σ′ be a stable-state in-

put/state machine with the skeleton matrix K(Σ′). Then,

the following two statements are equivalent.

(i) There is a state-feedback controller C for which the

closed loop system Σc|s is stably equivalent to Σ′, where

Σc|s operates in semi-fundamental mode.

(ii) The skeleton matrices satisfy K(Σ) ≥ K(Σ′). ♦

Theorem 25 provides a simple necessary and sufficient

condition for the existence of a solution of the model

matching problem for machines with infinite cycles. The

construction of appropriate controllers is described in [15].

Note that the closed loop system Σc has no persistent

infinite cycles. Still, within the closed loop, the machine

Σ may pass transiently through an infinite cycle on its

way from one stable combination to another.

IV. REFERENCES

[1] G. Barrett and S. Lafortune, "Bisimulation, the Supervisory Control

Problem, and Strong Model Matching for Finite State Machines," J.

of Discrete Event Dynamic Systems, vol. 8, no. 4, 1998, pp. 377–

429.

[2] M. D. Dibenedetto, A. Saldanha, and A. Sangiovanni–Vencentelli,

"Model matching for finite state machines," Proc. of the IEEE Con-

ference on Decision and Control, vol. 3, 1994, pp. 3117–3124.

[3] M. D. Dibenedetto, A. Sangiovanni–Vincentelli, and T. Villa,

″Model matching for finite–state machines,″ IEEE Trans. on Auto-

matic Control, vol. 46, no. 11, 2001, pp. 1726–1743.

[4] X. J. Geng and J. Hammer, "Input/output control of asynchronous

sequential machines", IEEE Trans. Automatic Control (to appear).

[5] X. J. Geng and J. Hammer, "Asynchronous sequential machines:

input/output control", Proc. of the 12th Mediterranean Conference

on Control and Automation, Kusadasi, Turkey, June 2004.

[6] J. Hammer, "On some control problems in molecular biology,"

Proc. of the IEEE Conference on Decision and Control, December

1994.

[7] J. Hammer, "On the modeling and control of biological signal

chains," Proc. IEEE Conf. on Decision and Control, December

1995.

[8] J. Hammer, "On the corrective control of sequential machines,"

International J. of Control, vol. 65, pp. 249-276.

[9] J. Hammer, "On the control of incompletely described sequential

machines," International J. of Control, vol. 63, no. 6, pp. 1005-

1028.

[10] J. Hammer, "On the control of sequential machines with distur-

bances," International J. Control, vol. 67, no. 3, pp. 307-331.

[11] T. E. Murphy, X. J. Geng, and J. Hammer, "Controlling races in

asynchronous sequential machines", Proc. of the IFAC World Con-

gress, Barcelona, July 2002.

[12] T. E. Murphy, X. J. Geng, and J. Hammer, "On the control of

asynchronous machines with races", IEEE Transactions on Auto-

matic Control, vol. 48, no. 6, pp. 1073-1081.

[13] P. J. G. Ramadge and W. M. Wonham, "Supervisory control of a

class of discrete event processes," SIAM J. Control and Optimiza-

tion, vol. 25, no. 1, 1987, pp. 206-230.

[14] J. G. Thistle and W. M. Wonham, "Control of infinite behavior of

finite automata," SIAM J. Cont. Opt., vol. 32-4, 1994, pp. 1075-

1097.

[15] N. Venkatraman and J. Hammer, "On the control of asynchronous

sequential machines with infinite cycles," International Journal of

Control (to appear).

[16] N. Venkatraman and J. Hammer, "Stable realizations of asynchro-

nous sequential machines with infinite cycles," Proceedings of the

6th Asian Control Conference (to appear).

