
  

Abstract—The existence of state-feedback controllers 

that eliminate the effects of infinite cycles on asynchro-

nous sequential machines is considered. The main objec-

tive is to develop controllers that stop infinite cycles in an 

existing machine, while controlling the machine to match 

a prescribed model. Necessary and sufficient conditions 

for the existence of such controllers are stated in terms of 

a simple test applied to a certain numerical matrix. 

I. INTRODUCTION 

SYNCHRONOUS sequential machines are common 

building blocks of high-speed computing equipment. 

Asynchronous machines can be afflicted by infinite cycles, 

which cause a machine to loop indefinitely among several 

of its states. Infinite cycles are caused by malfunctions, 

design flaws, component failures, or implementation 

flaws. This note presents state-feedback controllers that 

overcome the effects of infinite cycles on existing asyn-

chronous machines. These controllers achieve two objec-

tives: (i) the controlled machine does not linger in an infi-

nite cycle; and (ii) the performance of the controlled ma-

chine matches a desired model. 

  (1) 

Here, Σ  is the faulty asynchronous machine being con-

trolled, and  C  is an asynchronous machine serving as a 

controller. The closed loop machine is denoted by  Σc. The 

controller can be designed so that the closed loop system 

will function properly before, as well as after, an infinite 
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cycle appears in  Σ. In other words, the controller can 

serve as a preemptive measure against malfunctions, im-

proving system reliability. For machines with existing 

infinite cycles, the use of a controller is often economi-

cally more efficient than replacing a faulty machine. It is 

the only practical solution when the affected machine is 

inaccessible. 

The existence of a controller depends on certain reach-

ability properties of the faulty machine  Σ. These proper-

ties can be characterized in terms of a numerical matrix of 

zeros and ones, called the "skeleton matrix" of  Σ  (§IV). 

The skeleton matrix determines whether the control objec-

tive can be achieved; its derivation is based on the theory 

of stable realizations of [15] and [16]. A stable realization 

represents every persistent status of a machine and the 

transitions from one persistent status to another. 

This note continues [6], [7], [8], [9], [10], [11], [12], 

[4], and [5]. Studies dealing with other aspects of the con-

trol of discrete event systems can be found in [13], [2], 

[14], [1], [3], and others. The existing literature about infi-

nite cycles of asynchronous machines deals with tech-

niques for the design and implementation of machines that 

are free of infinite cycles. There seem to be no reports 

regarding the use of controllers to eliminate the effects of 

infinite cycles in an existing machine. 

II. TERMINOLOGY AND BACKGROUND 

For a finite non-empty alphabet  A, let  A*  be the set of 

all finite strings of characters of  A, and let  A
+
  be the set 

of all non-empty strings in  A*. Assume that  A  does not 

include the digits  0  and  1. The length  |w|  of a string  w 

∈ A*  is the number of characters of  w. A partial function  

f : S1 → S2  is a function defined over a subset of  S1. 

An asynchronous machine  Σ  is a sextuple  

(A,Y,X,x0,f,h), where  A, Y, and  X  are alphabets, x0  is 

the initial state, and f : X×A→X  and  h : X×A→Y are 

partial functions. Here, A  is the input alphabet, Y  is the 

output alphabet, and  X  is the set of states; f  is the recur-

sion function and  h  is the output function. A valid pair  

(x,u) ∈ X×A  is a point at which  f  and  h  are defined. 

The machine  Σ  accepts input strings  u := u0 u1 ... ∈ 

A*; in response, it generates a string of states  x0x1x2 … ∈ 

X*  and a string of output values  y0y1y2 ... ∈ Y*, accord-
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ing to 

 
xk+1 = f(xk,uk)‚

yk = h(xk,uk)‚   k = 0‚ 1‚ 2‚ …
 

An input sequence is permissible if all pairs  (xk,uk), k ≥ 0, 

are valid pairs. The step counter  k  is incremented by one 

at every change of the input or of the state. The machine  

Σ  is an input/state machine if the output is equal to the 

state, i.e., yk = xk, k ≥ 0. An input/state machine  Σ  is rep-

resented by the triple  (A,X,f), allowing for an arbitrary 

initial state. 

A valid pair  (x,u) ∈ X×A  of  Σ  is a stable combination 

if  f(x,u) = x, i.e., if the state  x  is a fixed point of  f. A 

machine lingers at a stable combination until an input 

change occurs. A pair  (x,u)  that is not a stable combina-

tion is a transient combination. A state is potentially stable 

if it has a stable combination. States that are not poten-

tially stable are invisible to the user, since the machine can 

never linger at them. It is customary to ignore states that 

are not potentially stable. 

A transient pair  (x,u)  initiates a chain of transitions  x1 

= f(x,u), x2 = f(x1,u), ..., where the input character  u  is 

kept fixed. If this chain of transitions ends, then there is an 

integer  q ≥ 1  such that the state  x′ := f(xq,u)  of the chain 

satisfies  x′ = f(x′,u), i.e., (x′,u)  is a stable combination. 

Then, x′  is called the next stable state of  x  with the input 

value  u. If this chain of transitions does not terminate, 

then the pair  (x,u)  is part of an infinite cycle. 

If the input of an asynchronous machine changes while 

the machine is undergoing transitions, the machine's re-

sponse may become unpredictable, since the state at the 

time of the input change is unpredictable. To avoid this 

uncertainty, asynchronous machines are normally operated 

in fundamental mode, where only one variable of the ma-

chine is allowed to change at a time. In fundamental mode 

operation, a change of the input is allowed only while the 

machine is in a stable combination. For configuration (1), 

this means that the output of  C  must remain constant 

while  Σ  is undergoing transitions; and the output of  Σ  

must remain constant while  C  is undergoing transitions. 

Fundamental mode operation is impossible when a ma-

chine is in an infinite cycle, since, in order to take the ma-

chine out of the infinite cycle, the machine's input must be 

changed during the course of the cycle. The outcome of 

such an input change may be unpredictable. In this note, 

asynchronous machines operate in fundamental mode in 

all cases, except during an infinite cycle, as follows. 

(2) DEFINITION. An asynchronous machine  Σ  operates 

in semi-fundamental mode, if it operates in fundamental 

mode when not in an infinite cycle. ♦  

I. GENERALIZED REALIZATIONS 

Consider a machine  Σ  with the state set  X = {x
1
, x

2
, 

..., x
n
}  and the recursion function  f. An infinite cycle  χ = 

{xj1, xj2, ..., xjp; a}  of  Σ  with the input character  a  and 

the  states  xj1, xj2, ..., xjp  is described by 

 
xjk+1 = f(xjk,a)‚ k = 1‚ ...‚ p–1‚

xj1 = f(xjp‚a).
  

The state set of  χ  is  X(χ) := {xj1, xj2, ..., xjp}. 

 The length  l  of the infinite cycle  χ  is the number of 

distinct states it includes, i.e., l = p  in this case. When the 

length of an infinite cycle is  1, say  χ = {x; a}, then we 

have  x = f(x,a), i.e., (x,a)  is stable combination of  Σ. 

Thus, an infinite cycle of length  1  is a stable combina-

tion. In the sequel, unless specifically stated otherwise, 

"infinite cycle" refers to an infinite cycle of length greater 

than  1. 

Let  (x,u)  be a valid pair of the machine  Σ = 

(A,X,Y,x0,f,h), and assume it has a next stable state x′. 

The  stable recursion function  s : X×A→X  of  Σ  is de-

fined by setting  s(x,u) := x′  for every valid pair  (x,u)  

that has a next stable state. When  s  is used as a recursion 

function, it induces the stable-state machine  Σ|s = 

(A,X,Y,x0,s,h). 

When  Σ  has infinite cycles, being in an infinite cycle is 

clearly a persistent status of the machine, and this status is 

definitely experienced by the machine's user. The notion 

of stable-state machine is generalized to take this fact into 

account, as follows (see [15] and [16] for details). 

(3) DEFINITION. Let  Σ  be an asynchronous machine 

with the state set  X = {x
1
, ..., x

n
}  and  t > 0  infinite cy-

cles  χ1, ..., χt  of length greater than  1. With each infinite 

cycle  χi, associate a new state  x
n+i

, called a cycle state. 

The set  X̃ := {x
1
, ..., x

n
, x

n+1
, ..., x

n+t
}  is the augmented 

state set of  Σ; its elements are the generalized states of  Σ. 

A pair  (x,u) ∈ X̃×A  is a generalized valid pair of  Σ  if 

one of the following holds: (i)  x ∈ X  and  (x,u)  is a valid 

pair of  Σ; or (ii)  x = x
n+i

  for an integer  i ∈ {1, ..., t}  and  

u  forms a valid pair with each state of the infinite cycle  

χi. 

A pair  (x,u) ∈ X̃×A  is a generalized stable combination  

if one of the following holds: (i)  x ∈ X  and  (x,u)  is a 

stable combination of  Σ; or (ii)  x = x
n+i

  for an integer  i 

∈ {1, ..., t}  and  u  is the input character of the infinite 

cycle  χi. ♦  

Thus, every persistent status of an asynchronous ma-

chine (a stable combination or an infinite cycle) is de-

scribed by a generalized stable combination. 

(4) EXAMPLE. Consider the machine  Σ  with the input 

set  A = {a, b, c}, the state set  X = {x
1
, x

2
, x

3
}, and the 

transition function  f  given by the state transition table: 

 a b c 

x
1
 x

1
 x

3
 x

1
 

x
2
 x

2
 x

3
 x

3
 

x
3
 x

2
 x

2
 x

3
 

This machine has one infinite cycle of length bigger than 

one: χ1 := {x
2
, x

3
; b}. With this infinite cycle, associate a 



 

 

 

cycle state x
4
. The augmented state set of  Σ  is then  X̃ = 

{x
1
, x

2
, x

3
, x

4
}. The generalized stable combinations of  Σ  

are  (x
4
,b), (x

1
,a), (x

2
,a), (x

1
,c), and  (x

3
,c). ♦  

We introduce now a new recursion function over the 

augmented state set  X̃ = {x
1
, ..., x

n+t
}  of a machine  Σ = 

(A,Y,X,x0,f,h). Let  χ1, ..., χt  be the infinite cycles of  Σ. 

First, define a partial function  s
e
 : X×A → X̃  over all 

valid pairs  (x,u) ∈ X×A  of  Σ  by setting 

s
e
(x,u) = 



s(x,u)  if  (x,u)  has a next stable state‚

x
n+i

  if  (f(x,u),u)  is a pair of the infinite cycle  χi.
 

Recall that  X(χ)  denotes the set of states included in an 

infinite cycle  χ. Let  u  be an input character that forms 

valid pairs with all states of  X(χ). Denote by  s
e
[X(χ),u]  

the image of the set  X(χ)×u  through  s
e
, namely, 

 s
e
[X(χ),u] := {x′ ∈ X̃ : x′ = s

e
(x,u)  and  x ∈ X(χ)}. 

Note that  s
e
[X(χ),u]  can be a single state or a set of 

states, depending on  X(χ)  and on  u. The following no-

tion is critical to the control of asynchronous machines 

with infinite cycles. It defines a function whose values are 

subsets of  X̃. When the value consists of a single element  

x  of  X̃, we shall drop the (formal) distinction between the 

element  x ∈ X̃  and the subset  {x} ⊂ X̃. 

(5) DEFINITION. Let  Σ = (A,Y,X,x0,f,h)  be an asyn-

chronous machine with the infinite cycles  χ1, ..., χt  and 

the augmented state set  X̃ = {x
1
, ..., x

n+t
}. Denote by  P(X̃)  

the set of all subsets of  X̃. The generalized stable recur-

sion function  s : X̃×A → P(X̃)  of  Σ  is defined over all 

generalized valid pairs  (x,u) ∈ X̃×A  of  Σ  by 

 s(x,u) := 

s

e
(x‚u)  if  x ∈ X‚

s
e
[X(χi)‚u] if  x = x

n+i
‚ i = 1‚ ...‚ t.

 

The generalized stable-state machine  Σ|s = (A,X̃,s)  of  Σ  

is an input/state machine with the state set  X̃  and the re-

cursion function  s. ♦   

(6) EXAMPLE. A direct examination shows that the gen-

eralized stable recursion function  s  of the machine  Σ  of 

Example 4 is given by 

 a b c 

x
1
 x

1
 x

4
 x

1
 

x
2
 x

2
 x

4
 x

3
 

x
3
 x

2
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4
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x
4
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2
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Note that stable combinations of the generalized stable 

state machine  Σ|s  represent either stable combinations of 

the original machine  Σ  or infinite cycles of  Σ. This leads 

to the following conclusion, which motivates the use of 

generalized stable state machines ([15], [16]). 

(7) PROPOSITION. Semi-fundamental mode operation of 

a machine  Σ  is equivalent to fundamental mode operation 

of its generalized stable state machine  Σ|s. ♦  

The following relates to a basic concept of Automata 

theory (compare to [11], [12], [4], and [5]). 

(8) DEFINITION. Let  Σ = (A,Y,X,x0,f,h)  and  Σ′ = 

(A,Y,X′,ζ0,f′,h′)  be two machines having the same input 

and the same output sets, and let  Σ|s  and  Σ′|s  be the gen-

eralized stable state machines of  Σ  and  Σ′, respectively. 

Two states  x ∈ X  and  ζ ∈ X′  are stably equivalent (x ≡ 

ζ) if the following is true: When  Σ|s  starts from the state  

x  and  Σ′|s  starts from the state  ζ, then (i)  Σ|s  and  Σ′|s  

have the same permissible input strings; and (ii)  Σ|s  and  

Σ′|s  generate the same output string for every permissible 

input string. Two machines  Σ  and  Σ′  are stably equiva-

lent if their initial states are stably equivalent, i.e., if  x0 ≡ 

ζ0; in such case, we write  Σ = Σ′. ♦  

 Stably equivalent machines appear identical to a user. 

II. THE SKELETON MATRIX 

Consider again the generalizes stable state machine  Σ|s 

= (A,X̃,s)  with the generalized state set  X̃ = {x
1
, ..., x

n+t
}  

and the generalized stable recursion function  s. Recall that 

a critical race is a transition whose outcome is not 

uniquely predetermined. Assume that the input string  u ∈ 

A
+
, when applied at the generalized state  x

j
  of  Σ|s, creates 

a critical race with the outcomes  x
p
  and  x

q
, p ≠ q. As-

sume further that there are input strings that take  Σ|s  from 

these states to a common target state  x
s
  via deterministic 

transitions. Namely, assume that there are input strings  u
1
, 

u
2
 ∈ A

+
, where  u

1
  takes  Σ|s  from  x

p
  to  x

s
  deterministi-

cally, while  u
2
  takes  Σ|s  from  x

q
  to  x

s
  deterministi-

cally; i.e., x
s
 = s(x

p
,u

1
) = s(x

q
,u

2
). Then, by using state-

feedback control, we can induce a deterministic transition 

from  x
j
  to  x

s
  as follows: apply the input string  u  at the 

state  x
j
, and check the outcome. If the outcome is  x

p
, then 

continue with the input string  u
1
; if the outcome is  x

q
, 

then continue with the input string  u
2
. This leads to the 

deterministic (i.e., unique) outcome  x
s
, masking the ef-

fects of the critical race along the way. Note that all transi-

tions are in semi-fundamental mode operation. To general-

ize, we need the following concept. (Let  Πx : X̃×A → X̃ : 

Πx(x,u) = x  be the standard projection onto  X̃.) 

(9) DEFINITION. Let  Σ  be an asynchronous machine 

inducing the generalized stable state machine  Σ|s = (A,X̃

,s), where  X̃ = {x
1
, ..., x

n+t
}. A feedback trajectory from 

the generalized state  x
j
  to the generalized state  x

i
  is a list  

{S0, S1, S2, ..., Sp}  of sets of valid pairs of  Σ|s  with the 

following properties: 

(i)  S0 = {(x
j
,u0)}, where  u0  is a character of  A; 

(ii) s[Sα] ⊂ Πx[Sα+1], α = 0, ..., p–1; 

(iii) s[Sp] = {x
i
}.  ♦  

(10) EXAMPLE. A feedback trajectory from  x
1
  to  x

2
 for 

the generalized stable state machine  Σ|s  of Example 6 is  

S0 = {(x
1
,b)}, S1 = {(x

4
,a)}, S2 = {(x

2
,a)}. ♦  

 The argument of the first paragraph of this section can 

be readily generalized to a proof of the next statement, 

♦ 



 

 

 

which shows that feedback trajectories characterize the 

existence of feedback controllers. 

(11) PROPOSITION. Let  x
j
  and  x

i
  be generalized states 

of a machine  Σ. The following are equivalent. 

(a) There is a state feedback controller that induces a de-

terministic transition from  x
j
  to  x

i
  in semi-fundamental 

mode operation. 

(b) There is a feedback trajectory from  x
j
  to  x

i
. ♦  

The following notion plays an important role. 

(12) DEFINITION. Let  Σ  be an asynchronous machine 

with the augmented state set  X̃  and the generalized stable 

recursion function  s. A generalized state  x′ ∈ X̃ is stably 

reachable from a generalized state  x ∈ X̃  if there is a 

input string  u = u0u1…uk  of  Σ  for which  x′ ∈ s(x,u). ♦  

To perform computations related to stable reachability, 

we need the following matrix (see [15] and [16] for de-

tails). 

(13) DEFINITION. Let  Σ|s = (A,X̃,s)  be a generalized 

stable state machine with the augmented state set  X̃ = {x
1
, 

..., x
n+t

}. Denote by  s*(x
i
,x

j
)  the set of all input characters  

u ∈ A  for which  x
i
 ∈ s(x

j
,u), and let  N  be a character 

not included in the alphabet  A. Then, the matrix of one-

step generalized stable transitions  R(Σ|s)  is an  

(n+t)×(n+t)  matrix whose  (i,j)  entry is given by 

Rij(Σ|s) = 

s*(x

i
,x

j
)  if  s*(x

i
,x

j
) ≠ ∅‚

N  otherwise‚ i‚ j = 1‚ ...‚ n+t.
 ♦ 

The matrix  R(Σ|s)  characterizes all one step transitions 

of  Σ|s. Its  (i,j)  entry, if not  N, consists of all (single) in-

put characters that take  Σ|s  from  x
j
  to a generalized sta-

ble combination with  x
i
. An  (i,j)  entry of  N  indicates 

that  Σ|s  cannot be driven from  x
j
  to a generalized stable 

combination with  x
i
  by applying a single input character. 

Recall that  A*  is the set of strings of characters of  A. 

We describe now two operations on the matrix  R(Σ|s).  

First, an operation that mimics matrix addition ([11] and 

[12]). Let  wi  be a subset of strings or the character  N, i = 

1, 2. The operation  U⁄   of unison is defined by 

 w1 U⁄  w2 := 





w1 U w2  if  w1 ⊂ A*  and  w2 ⊂ A*‚

w1  if  w1 ⊂ A*  and  w2 = N‚

w2  if  w1 = N  and  w2 ⊂ A*‚

N  if  w1 = w2 = N.

 

 

Here, N  is treated like the empty set it represents. For  

n×n  matrices, unison is entrywise: Cij := Aij U⁄  Bij, i, j = 1, 

..., n. 

Concatenation of strings  w1, w2 ∈ A* U N  is given by 

 conc(w1,w2) := 

w2w1  if  w1‚ w2 ∈ A*‚

N  if  w1 = N  or  w2 = N.
 

More generally, let  W = {w1, w2, …, wq}  and  V = {v1, 

v2, …, vr}  be two subsets, whose elements are either 

strings of  A*  or the character  N. Define 

 conc(W,V):= U⁄ i=1‚...‚q
j=1‚...‚r

 conc(wi,vj). 

Note that the concatenation result is either a subset of  A*  

or the character  N, and  N  takes the role of a "zero". The 

product  Z := CD  of two  n×n  matrices  C  and  D  is an  

n×n  matrix with the entries 

 Zij := U⁄
n
k=1

 conc(Cik,Dkj), i,j = 1, …, n. 

Using this product, we can define the powers 

 R
q
(Σ|s) := R

q–1
(Σ|s)R(Σ|s), q = 2, 3, ... 

If not  N, the  (i,j)  entry of  R
q
(Σ|s)  consists of all input 

strings that may take  x
j
  to a generalized stable combina-

tion with  x
i
  in  q  generalized stable transitions (these 

transitions may not be deterministic). Define 

 R
(q)

(Σ|s) := U⁄
 
p=1...q

 R
p
(Σ|s), q = 2, 3, ...  

If not  N, the  (i,j)  entry of  R
(q)

(Σ|s)  consists of all strings 

that may take the machine  Σ|s  from  x
j
  to a generalized 

stable combination with  x
i
  in  q  or fewer generalized 

stable transitions (these transitions may not be determinis-

tic). The next fact's proof is similar to [[12] Lemma 3.9]. 

(14) LEMMA. Let  Σ  be an asynchronous machine with  n  

states, t  infinite cycles, and the generalized stable-state 

machine  Σ|s. The following two statements are equivalent: 

(i) The generalized state  x
i
  is stably reachable from the 

generalized state  x
j
. 

(ii) The  (i,j)  entry of  R
(n+t–1)

(Σ|s)  is not  N. ♦  

Thus, the matrix  R
(n+t–1)

(Σ|s)  characterizes all transi-

tions possible for the generalized stable-state machine  Σ|s. 

In the matrix  R(Σ|s), a critical race is represented by the 

presence of an input character  u  in more than one entry 

of a column, as this indicates that the input character  u  

transits the state corresponding to that column to several 

different outcomes. This leads to the following. 

(15) PROPOSITION. Let  R(Σ|s)  be the one-step matrix of 

stable transitions of a machine  Σ  with  n  states and  t  

infinite cycles. Then, the following are equivalent for all 

input strings  u ∈ A
+
  and for all  j = 1, ..., n+t. 

(i) Applying  u  at the generalized state  x
j
  results in a 

critical race. 

(ii) The string  u  appears in more than one entry of col-

umn  j  of the matrix  R
(n+t–1)

(Σ|s). ♦  

The next algorithm characterizes all pairs of generalized 

states that are connected by a feedback trajectory. It oper-

ates on the matrix of one-step generalized stable transi-

tions, gradually transforming it into a numerical matrix of 

zeros and ones. In the resulting matrix, an entry of  1  ap-

pears in position  (i,j)  if and only if there is a feedback 

trajectory from  x
j
  to  x

i
. This characterizes all the ways in 

which state feedback controllers can affect a machine  Σ. 

We define a meet operation on strings of  A
+
  and the 

digits  0  and  1. Let  ω  be a character not in  A. Set 

 0 ∧ 0 := 0, 0 ∧ 1 = 1 ∧ 0 := 0, 1 ∧ 1 := 1, 

 0 ∧ a = a ∧ 0 := 0, 1 ∧ a = a ∧ 1 := ω, for all  a ∈ A
+
. 

The meet of two vectors is defined entrywise, e.g., 

  (1,1,0,a,0) ∧ (1,0,0,1,a) = (1,0,0,ω,0). 

(16) ALGORITHM. Let  R(Σ|s)  be the matrix of one-step 

generalized stable transitions of  Σ. Compute  R
(n+t–1)

(Σ|s). 

Step 1. Replace all entries of  N  in the matrix  R
(n+t–1)

(Σ|s)  



 

 

 

by the digit  0; denote the resulting matrix by  K
1
. 

Step 2. Perform (a), (b), (c), and (d) below for each  i, j = 

1, ..., n+t; then, continue to (e): 

(a) If the  (i,j)  entry  K
1
ij  of  K

1
  includes a string of  A

+
  

that does not appear in any other entry of the same column  

j, then: 

(b) Delete the strings included in  K
1
ij  from all entries of 

column  j  of  K
1
. 

(c) Replace all resulting empty entries by the digit  0. 

(d) Replace entry  K
1
ij  by the digit  1. 

(e) Denote the resulting matrix by  K′(1). Delete from  

K′(1)  all strings of  A
+
  whose length is greater than 1. 

Replace all empty entries by the digit  0. Denote the result-

ing matrix by  K(1). Set  k := 1, α := 1. 

Step 3. If  k = n+t+1, then perform the following: 

(a) Set  Kα(Σ) := K(k). 

(b) If  α ≥ 2  and  Kα(Σ) = Kα–1(Σ), then replace by  0  all 

entries of  Kα(Σ)  that are not  1; denote the resulting ma-

trix by  Kg(Σ), and terminate the algorithm. Otherwise, 

replace  α  by  α+1, set  k := 1, and continue to Step 4. 

Step 4. If all entries of column  k  of the matrix  K(k)  are  

1  or  0, then set  K(k+1) := K(k), and repeat from Step 3 

with the value  k+1  for  k. Otherwise, proceed to Step 5. 

Step 5. (a) If the character  u ∈ A  appears in column  k  of  

K(k), then let  i1, i2, ..., iq  be the rows of column  k  of  

K(k)  that include  u. Denote by  J(u)  the meet of columns  

i1, i2, ..., iq  of the matrix  K(k). 

(b) If J(u)  has no entries other than  0  or  1, then delete  u  

from all entries of column  k  of the matrix  K(k); set all 

empty entries to the value  0. Continue to (c). 

(c) If  J(u)  has no entries of  1, then return to Step 4. Oth-

erwise, continue to (d). 

(d) If  J(u)  has entries of  1, let  j1, ..., jr  be the entries of  

J(u)  having the value  1. Let  S(k)  be the set of columns 

of  K(k)  that consists of column  k  and of every column 

that has the digit  1  in row  k. In  K(k), perform the fol-

lowing operations on every column of  S(k): 

(1) Delete from the column all occurrences of input char-

acters that appear in rows  j1, ..., jr  of the column. 

(2) Replace rows  j1, ..., jr  of the column by the digit  1. 

(3) If any entries of  K(k) remain empty, then replace them 

by the digit  0. Return to Step 4. ♦  

(17) DEFINITION. The outcome  Kg(Σ)  of Algorithm 16 

is called the generalized skeleton matrix of  Σ. ♦  

(18) EXAMPLE. For the machine of Example 6, 

 R(Σ|s) = 









{a‚c} N N N

N a a a

N c c c

b b b b

 

 and Algorithm 16 yields 

 Kg(Σ) = 









1 0 0 0

1 1 1 1

1 1 1 1

1 1 1 1

. ♦  (19) 

The next fact indicates the significance of Algorithm 

16. 

(20) PROPOSITION. Let  Kg(Σ)  be the generalized skele-

ton matrix of  Σ, and let  x
i
  and  x

j
  be two generalized 

states of  Σ. Then, the following are equivalent. 

(i) There is a feedback trajectory from  x
j
  to  x

i
. 

(ii) The  (i,j)  entry of  Kg(Σ)  is  1. 

Proof. Let  s  be the generalized stable recursion func-

tion of  Σ. Assume that there is a feedback trajectory  S0, 

S1, ... Sp  from  x
j
  to  x

i
. By the definition of feedback 

trajectory, Sk = {(x
i(1,k)

,u(1,k)), ..., (x
i(q(k),k)

,u(q(k),k))}, k = 

1, ..., p–1, S0 = {(x
j
,u)}, s[Sp] = x

i
, and  s(x

i(r,k)
,u(r,k)) ∈ 

Πx[Sk+1], r = 1, ..., q(k), k = 0, ..., p–1. Applying Step 5 of 

Algorithm 16 recursively at each of the steps  k = p, p–1, 

..., 1  (reverse order), while using the previous relations, 

shows that  Kg(Σ)  has an entry of  1  in position  (i,j). 

Thus, (i) entails (ii). 

Conversely, assume that there is an entry of  1  in posi-

tion  (i,j)  of  Kg(Σ). Consider first the matrix  K(1)  of 

Algorithm 16. By construction, an entry of  1  in position  

(i,j)  of  K(1)  indicates the existence of a deterministic 

transition from  x
j
  to  x

i
. Next, referring to Step 5 of Algo-

rithm 16, let  k0  be the first value of  k  at which the con-

dition of Step 5(a) of Algorithm 16 is satisfied. Then, Σ  

has the critical race  s(x
k0,u) = {x

i1, ..., x
iq}. By the con-

struction of  J(u)  in Step 5(d) of Algorithm 16, it follows 

that an entry of  1  in row  j  of  J(u)  indicates that there is 

a deterministic transition from each one of the generalized 

states  x
i1, ..., x

iq  to the generalized state  x
j
. Recalling the 

first paragraph of section IV, this implies the existence of 

a feedback trajectory from  x
k0  to  x

j
. Applying similar 

reasoning recursively at every cycle of Algorithm 16, we 

conclude that an entry of  1  in position  (i,j)  of  Kg(Σ)  

implies the existence of a feedback trajectory from  x
j
  to  

x
i
. Finally, if  α ≥ 2  and  Kα(Σ) = Kα–1(Σ)  in Step 3(b) of 

Algorithm 16, then any strings of  A
+
  present in  Kα(Σ)  

involve critical races whose outcomes cannot be guided 

toward a single state via a feedback trajectory. Thus, (ii) 

implies (i). ♦  

The generalized skeleton matrix plays a critical role in 

our discussion, reminiscent of the role played by the skele-

ton matrix in [11], [12], [4], and [5]. Combining Proposi-

tions 7, 11, and 20, leads us to one of the main results of 

this note: a characterization of all possibilities of control-

ling an asynchronous machine. 

(21) THEOREM. Let  Σ  be a machine with the general-

ized skeleton matrix  Kg(Σ), and let  x
i
  and  x

j
  be two 

generalized states of  Σ. The following are equivalent. 

(a) There is a feedback controller that takes  Σ  from  x
j
  to  

x
i
  in semi-fundamental mode operation. 

(b) The  (i,j)  entry of  Kg(Σ)  is  1. ♦  

III. THE MODEL MATCHING PROBLEM 

(22) PROBLEM. Let  Σ  and  Σ′  be input/state machines 

having the same input and the same output alphabets, 



 

 

 

where  Σ′  is a stable-state machine. Find necessary and 

sufficient conditions for the existence of a controller  C  

for which the generalized stable-state machine  Σc|s  is sta-

bly equivalent to  Σ′  for all initial conditions. ♦  

The controller  C  of Problem 22 makes the closed loop 

system imitate the behavior of  Σ′. The machine  Σ′  is 

called the model, and it has no infinite cycles. Thus, when 

model matching is achieved, the controller  C  eliminates 

the effects of the infinite cycles of  Σ, in addition to induc-

ing desirable dynamical behavior. 

Once the controller  C  has been activated, there is no 

more interest in transitions of  Σ  that either start or end at 

generalized stable combinations with cycle states, since 

these would indicate the presence of persistent infinite 

cycles in the closed loop system. Now, transitions that 

start at generalized stable combinations with cycle states 

are represented by the last  t  columns of  Kg(Σ), while 

transitions that terminate at generalized stable combina-

tions with cycle states are represented by the last  t  rows 

of  Kg(Σ). Thus, for design purposes, the last  t  rows and 

the last  t  columns of  Kg(Σ)  can be deleted (however, 

these are critical during the construction of  Kg(Σ)). 

(23) DEFINITION. Let  Σ  be an asynchronous machine 

with  n  states and  t  infinite cycles. The skeleton matrix  

K(Σ)  is obtained by deleting the last  t  rows and the last  t  

columns of the generalized skeleton matrix  Kg(Σ). ♦  

The entries of the skeleton matrix may still include tran-

sitions that pass transiently through infinite cycles. Only 

transitions that start or end at infinite cycles are elimi-

nated. 

(24) EXAMPLE. For  Kg(Σ)  of (19), 

 K(Σ) = 





1 0 0

1 1 1

1 1 1
. ♦  

We can now to state a solution of the Model Matching 

Problem 22. Clearly, simulating the behavior of the model  

Σ′  means finding a controller  C  for which the general-

ized stable state machine  Σc|s  has the same transitions as 

the model  Σ′. All possible transitions of  Σ′  are repre-

sented by entries of  1  in its skeleton matrix  K(Σ′). Con-

sider, for example, one of these entries: suppose that  

K(Σ′)  has an entry of  1  in position  (i,j). This indicates 

that  Σ′  has a stable-state transition from the state  x
j
  to 

the state  x
i
. Then, for  Σc|s  to emulate  Σ′, the controller  C  

must drive  Σ  to perform a similar transition in semi-

fundamental mode, i.e., a transition from  x
j
  to  x

i
. In view 

of Theorem 21, the latter is possible if and only if the 

skeleton matrix  K(Σ)  has an entry of  1  in position  (i,j). 

In other words, the model matching problem has a solution 

if an only if  K(Σ)  has an entry of  1  in each position in 

which  K(Σ′)  has an entry of  1. As entries of  K(Σ)  or of  

K(Σ′)  can only be  0  or  1, this leads to the following. 

(Given two  n×n  numerical matrices  A  and  B, the ine-

quality  A ≥ B  is interpreted entrywise, i.e., Aij ≥ Bij  for 

all  i, j = 1, ..., n.)  

(25) THEOREM. Let  Σ  be an input/state machine with 

the skeleton matrix  K(Σ), and let  Σ′  be a stable-state in-

put/state machine with the skeleton matrix  K(Σ′). Then, 

the following two statements are equivalent. 

(i) There is a state-feedback controller  C  for which the 

closed loop system  Σc|s  is stably equivalent to Σ′, where  

Σc|s  operates in semi-fundamental mode. 

(ii) The skeleton matrices satisfy  K(Σ) ≥ K(Σ′). ♦  

Theorem 25 provides a simple necessary and sufficient 

condition for the existence of a solution of the model 

matching problem for machines with infinite cycles. The 

construction of appropriate controllers is described in [15]. 

Note that the closed loop system  Σc  has no persistent 

infinite cycles. Still, within the closed loop, the machine  

Σ  may pass transiently through an infinite cycle on its 

way from one stable combination to another. 
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