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Abstract

Asymptotic efficiency is an optimization measure
aimed at maximizing the flow through large capac-
ity digital communication networks. The present
note addresses the issue of controlling the network
so as to maximize asymptotic efficiency while
overcoming the effects of unmodeled traffic un-
certainties. It is shown that, in many common
situations, feedback controllers can achieve as-
ymptotic efficiency of  1  even in the presence of
substantial unmodeled uncertainties.

1  Introduction

Discrete (or digital) communication networks are
used to transfer data among computers or other
digital devices. The flow of data through a discrete
communication network is governed by a traffic
control algorithm. The algorithm controls traffic by
determining what data is admitted into the network
and by adjusting the flow of traffic within the net-
work. Issues related to the admission of data into a
network are discussed in [10] and [12].

The traffic flow within a network can be adjusted
by storing some of the transmitted data in buffers
during high traffic conditions, and releasing the
data back into the flow when the traffic subsides.
The present note deals with the development of
techniques for the optimization of buffer use. The

main objective is to maximize the data transmitted
through a network, especially when the data flow is
subject to large unmodeled uncertainties.

We adopt a networking model whereby each data
record is divided into small and equal segments.
Each segment is combined with information identi-
fying the data record to which the segment belongs
and the position of the segment within the data re-
cord. The resulting combination is called a cell
(e.g., [4]). The collection of all cells that pertain to
one data record forms a call.

The flow rate of cells varies during a call, depend-
ing on the rate at which data is generated by the
source. For example, in a digitized phone call there
are periods of low cell transmission rate, corre-
sponding to silence; in a digitized video call, a
change of scenery may result in a substantial mo-
mentary increase in cell transmission rate. Each
call category has its own typical cell flow pattern
(or waveform).

The efficiency of network utilization depends on
how well the waveforms of the various calls fit
with one another. In [10] and [12] we have intro-
duced the notion of complete families of calls. In a
complete family of calls, the waveforms of the calls
fit especially well together and are ideally suited
for maximal efficiency.

In practice, the cell flow rate of many classes of
calls is largely random. For such classes, the call
waveforms change from one sample of a call to an-
other, and are unpredictable. Moreover, in many
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cases (e.g., digitized video or other multimedia
calls), there are no reliable comprehensive statisti-
cal models of call waveforms. Hence, it is impor-
tant for traffic control algorithms to function prop-
erly in the presence of unmodeled uncertainties.

The present note examines some basic aspects of
network optimization in the presence of unmodeled
uncertainties. It shows that it is often possible to
use feedback controllers to reshape call waveforms
so as to reduce, and sometimes completely elimi-
nate, the effects of unmodeled uncertainties on
network efficiency. The ability to overcome the
effect of uncertainties on network efficiency de-
pends in a critical way on the delay tolerance of the
transmitted calls (section 3 below).

The most costly part of a discrete communication
network is usually its backbone - a long-distance
high-capacity network link. Our discussion con-
centrates on maximizing the utilization of the
backbone.

2  Basics

We represent a network by a discrete model,
whereby the flow of cells corresponds to a se-
quence of integers. Each element of the sequence
represents the number of cells that flow through a
point of the network during a specified time inter-
val  ∆ > 0. The size of  ∆  is selected short com-
pared to network time constants and delays. For an
integer  k ≥ 1, the symbol  vk  indicates the number
of cells that flow through the point  v  of the net-
work during the period  ((k–1)∆, k∆]. The interval
((k–1)∆, k∆]  is referred to as step  k.

A call has a finite duration of  T ≥ 1  steps, and is
represented by a piecewise constant sequence. The
interval  [1, T]  is called the call cycle. The integer
T  may represent a common multiple of the dura-
tions of all calls of interest, so all calls become
compatible with the call cycle. In the event of very
long calls, T  may indicate a convenient breakpoint
of a call. The interval  [T+1, 2T]  is then the second
call cycle, and so on.

For an integer  q ≥ 1, we partition the call cycle

into  q  disjoint sub-intervals  I1 := [1, t1], I2 :=
[t1+1, t2], ..., Iq := [tq–1+1, T], where  t1 = T  when
q = 1. The sub-intervals  I1, ..., Iq  are called seg-
ments. The number of steps in the segment  Ii  is
denoted by  λi, and we assume that  λi ≥ 1  for all  i
= 1, ..., q; i.e., there are no segments of zero length.
A list of  q  integers  ϕ(1), ϕ(2), ..., ϕ(q)  defines a
piecewise constant sequence  ϕ  over the set of
segments  I1, ... Iq  by setting

ϕk := 

⎩⎪
⎨
⎪⎧
0       for        k ≤ 0
ϕ(1)  for  1 ≤ k ≤ t1,
ϕ(2)  for  t1+1 ≤ k ≤ t2,
...,
ϕ(q)  for tq–1+1 ≤ k ≤ T,
0       for   T+1 ≤ k.
 

 

The integers  t1, t2, ..., T  are called the switching
times of the sequence. By employing segments of
length  1, every sequence with finite support can be
represented in this form.

A call  c  is a piecewise constant sequence, com-
posed of the sum of a deterministic part and an un-
certain part:

c = χ + υ.

Here, χ  represents the deterministic (or nominal)
part of the call, while  υ  represents the uncertain
part. Both  χ  and  υ  are piecewise constant func-
tions over the partition  {I1, ..., Iq}  of  [1, T]. The
only information available about the uncertain part
υ  is an amplitude bound  ρ ≥ 0:

0 ≤ υ ≤ ρ. (1)

No further information is available about the statis-
tics of the uncertain part. In this sense, υ  repre-
sents an unmodeled traffic uncertainty. Condition
(1) characterizes all permissible uncertain parts.

The signal model just introduced forms the basis of
the theory of sturdy traffic control ([10], [11],
[12]). In brief terms, sturdy traffic control deals
with the control of network traffic under conditions
of large and unmodeled uncertainties. An important
requirement of sturdy traffic control is to provide



lossless network transmission. In other words, no
cells may be lost during transfer through the net-
work. The requirement of lossless transmission sets
sturdy traffic control somewhat apart from the
more traditional statistical traffic control methods.
The latter do permit some cell losses during certain
rare traffic events (see for example [1], [9], and
[7]). By using sturdy traffic control algorithms, we
demonstrate in section 3 below that it is often pos-
sible to achieve full asymptotic efficiency with no
cell loss, despite call uncertainties.

The traffic passing through the network consists of
calls belonging to  m  call classes  C1, ..., Cm. Each
call class has its own nominal call waveform and
its own service requirements. The main service re-
quirement of interest to us here is the maximal
buffering delay, namely, the maximal time a cell of
the class may spend in the network buffering sys-
tem.

Some call classes are more tolerant of cell delays
than others. The class of computer data file trans-
fers, for example, allows substantial buffering de-
lays, while classes such as streaming multimedia
have a relatively low tolerance of delays. Let  τ(r)
be the maximal buffering delay permitted for cells
of the class  Cr. We assume that

τ(r) ≥ 1  for all  r = 1, ..., m,

namely, that each call class allows a buffering de-
lay of at least one step. Maximal buffering delay is,
of course, just one of many service requirements
(e.g., [4], [13], [16]). It is one of the most critical
service requirements from a network control point
of view.

A call of the class  Cr  is of the form

cr = χr + υr, r = 1, ..., m,

where  χr  is the nominal part and  υr  is the uncer-
tain part. All calls of a class  Cr  share the same
nominal call waveform  χr, but their uncertain part
υr  may vary from one call sample to another. For
the sake of notational simplicity, we assume that all
uncertain parts have the same amplitude bound  ρ ≥
0, so that

0 ≤ υr ≤ ρ  for all  r = 1, ..., m.

As mentioned earlier, the amplitude bound  ρ  is
the only a-priori information available about the
uncertain parts of the calls. No statistical model of
the uncertainties is available. No restrictions are
imposed on the magnitude of the uncertainty bound
ρ; it is not necessarily small when compared to call
amplitude.

We refer to the set  F := {c1, ..., cm}  as the family
of calls passing though the network. The family  F
induces the family  F(χ) := {χ1, ..., χm}  consisting
of the deterministic parts of the calls. The members
of  F(χ)  are piecewise constant sequences over the
partition  {I1, ..., Iq}  of the call cycle  [1, T].

The waveforms of the calls may change as the calls
are processed by the buffering system before en-
tering the backbone. Let  c

i
b  be the waveform of

call class  Ci  when it enters the backbone. As be-
fore, we decompose this waveform into a determi-
nistic part  χib  and an uncertain part  υ

i
b:

c
i
b = χ

i
b + υ

i
b, i = 1, ..., m.

At a given time, let  αi ≥ 0  be the number of calls
of the class  Ci  entering the backbone, i = 1, ..., m.
The non-negative integers  α1, ..., αm  are called
the call populations.  Let  c

i
b(k)  be the number of

cells of call  i  entering the backbone at the step  k.
Then, the total number of cells entering the back-
bone at the step  k  is given by

zk = Σ
m
i=1 αic

i
b(k).

Now, let  φ  be the maximal number of cells the
backbone can transmit in one step. We refer to  φ
as the backbone capacity. The call populations can
be regarded as functions  α1(φ), ..., αm(φ)  of  φ, as
they are obviously determined based on backbone
capacity. To make the entire notation consistent,
define the quantity

zk(φ) = Σ
m
i=1αi(φ)c

i
b(k),

which is equal to the total number of cells injected
into the backbone at the step  k; it characterizes the
backbone flow. Clearly, one must have



0 ≤ zk(φ) ≤ φ. (2)

We refer to  z(φ)  as the traffic control algorithm; it
is determined by the call populations  α1(φ), ...,
αm(φ)  and by the waveforms  c

1
b, ..., c

m
b .

With a capacity of  φ, the backbone can transfer a
maximum of  φT  cells during one call cycle. Re-
garding  φT  as the backbone volume, it follows
that the fraction of backbone volume utilized by the
traffic control algorithm  z(φ)  is given by

η(z(φ)) := 
ΣTk=1zk(φ)

Tφ  .

In view of (2),

0 ≤ η(z(φ)) ≤ 1. (3)

We refer to  η(z(φ))  as the efficiency of  z(φ); it
describes the backbone efficiency induced by the
traffic control algorithm  z(φ).

In applications, backbones usually have very large
capacity, so it is of interest to consider the effi-
ciency in the limit as  φ → ∞. This leads to the no-
tion of asymptotic efficiency of the traffic control
algorithm  z(φ), which is defined by (see also [10],
[12])

η∞(z) := limφ→∞ η(z(φ)).

Due to (3), the asymptotic efficiency is always
between zero and one. An asymptotic efficiency of
one means that, for large capacity backbones, the
flow induced by the traffic control algorithm  z(φ)
fills (almost) the entire backbone volume. Our ob-
jective is to devise traffic control algorithms that
achieve the highest possible asymptotic efficiency.
The highest achievable asymptotic efficiency de-
pends on the properties of the family  F  of calls
moving through the backbone.

The family  F(χb) := {χ1b, ..., χ
m
b }  is a complete

family of calls if there are integers  α1, ..., αm ≥ 0
such that the linear combination   Σm

i=1 αiχ
i
b = c  is

a non-zero constant over the interval  [1, T]. Con-
sider for a moment the case of purely deterministic
calls, namely, the case where each call  c

i
b  injected

into the backbone is entirely equal to its determi-

nistic part  χib, i = 1, .., m. Then, complete families
are the only families of calls for which one can
achieve asymptotic efficiency of  1, as indicated by
the following statement ([10], [12]).

THEOREM 4. Let  F(χb) := {χ1b, ..., χ
m
b }  be a

family of piecewise constant deterministic calls
over the partition  {I1, ..., Iq}. Then, the following
two statements are equivalent.

(i) There is a traffic control algorithm with asymp-
totic efficiency of  1  for the family  F(χb).

(ii) The family  F(χb)  is a complete family.

Moreover, asymptotic efficiency of  1  is achieved
only with constant backbone flow. ♦

The network optimization process developed in this
note is a global process, taking into account traffic
flow over a period of time. It is a functional opti-
mization approach to dynamic network control, re-
fining and highlighting some results of [11]. Other
approaches to network control are exposed in [8],
[15], [6], as well as in many other sources.

The traffic control algorithms developed in this
note depend on the use of feedback control. In this
sense, the present discussion continues a long tra-
dition of feedback use in traffic control algorithms
(e.g., [14], [5], [2] and [3]).

3  Calls With Uncertainties: Complete Nominal Families

We turn now to the problem of maximizing the as-
ymptotic efficiency of a backbone carrying calls
with amplitude uncertainties. We show that, in
some common cases, it is possible to eliminate en-
tirely the effects of the uncertainties on network
efficiency. In order to demonstrate the principles
with minimal complications, we restrict our atten-
tion here to the special case where the family  F(χ)
of deterministic parts forms a complete family of
calls.

Let then  F(χ) = {χ1, ..., χm}  be a complete family
of calls. Denote by  Vm({χ1, ..., χm})  the set of all
integers  α1, ..., αm ≥ 0  for which  Σ

m
i=1 αiχi = c  is

a non-zero constant over the interval  [1, T]. Note
that the definition of a complete family guarantees



that the set  Vm({χ1, ..., χm})  is not an empty set.

Returning now to the family  F = {c1, ..., cm}  of
calls entering the network, recall that  ci = χi + υi,
where  χi  is the nominal (deterministic) part and
υi  is the uncertain part, i = 1, ..., m. The calls are
defined over the partition  {I1, ..., Iq}  of the call
cycle  [1, T]. For the sake of simplicity, we assume
that the following are valid throughout the remain-
ing part of this note.

ASSUMPTIONS 5.

(i) All segments  I1, ..., Iq  have the same length  λi
= λ ≥ 1, i = 1, ..., q.

(ii) The nominal parts  χ1, ..., χm  form a complete
family of calls.

(iii) All calls have the same uncertainty bound  ρ
≥ 0, i.e.,  0 ≤ υi ≤ ρ  for all  i = 1, ..., m.

(iv) The delay bound  τ(i)  of the call class  Ci  sat-
isfies  1 ≤ τ(i) < 2λ  for all  i = 1, ..., m. ♦

Now, let  µ(⋅)  denote the unit step function, i.e.,
µ(t) = 1  when  t ≥ 0, and  µ(t) = 0  when  t < 0. For
a list of integers  α1, ..., αm ∈  Vm({χ1, ..., χm}),
define the following quantities.

τ* := min {τ(r) : αr ≠ 0, r = 1, ..., m}
θ(i,k) := min {k–τ(i), T, 0}.  (6)

σ(k) := (k – T)Σmi=1 αiθ(i,k)/λ, k = T+1, ..., T+λ. (7)

εk = 
Σmr=1 Σ

k
i=max{1,θ(i,k)+1} αrχ

r
i

Σmr=1 (k–τ(r))µ(k–τ(r)) αr

, (8)

                  k = τ*+1, ..., T,    if  τ*+1 ≤ T,

εk = 
Σmr=1 Σ

T
i=max{1,θ(i,k)+1} αrχ

r
i

[Σmr=1 θ(i,k)µ(θ(i,k))αr] – σ(k)
 , (9)

                                                   k = T+1, ..., T+λ,

 εT+λ+1 := 
λΣm

i=1 αiχi

T(Σmi=1 αi)
 , (10)

where, for any  k = 1, ..., T+λ, set  εk := ∞  if the
denominator of the expression for  εk  is less than
or equal to zero.

Finally, define the function

ε(α1, ..., αm) := min {εk : k = 1, ..., T+λ+1}

and note that it is always non-negative. A direct
examination shows that the value of  ε(α1, ..., αm)
is determined by the delay bounds  τ(1), ..., τ(m),
by the waveforms of the nominal parts  χ1, ..., χm

of the calls, and by the coefficients  α1, ..., αm. It
does not depend on the uncertain parts of the calls,
and consequently can be evaluated from a-priori
information. The following statement shows that
ε(α1, ..., αm)  provides a tight bound on the maxi-
mal uncertainty amplitude for which asymptotic
efficiency of  1  can be achieved for the backbone
of the network (see also [11]). It is the main result
of our current discussion.

THEOREM 11. Let  F = {c1, ..., cm}  be a family
of calls, where  χi  is the nominal part of the call  ci

and  ρ > 0  is the amplitude of its uncertain part, i =
1, ..., m. Assume that Assumptions 5 are valid.
Then, the following two statements are equivalent.

(i) There is a traffic control algorithm that yields
backbone asymptotic efficiency of  1  for  F.
(ii) There are integers  α1, ..., αm ∈  Vm({χ1, ...,
χm})  such that  ρ ≤ ε(α1, ..., αm).

An outline of the proof of Theorem 11 is provided
in the Appendix below. As we can see from the
Theorem, asymptotic efficiency of  1  can be
achieved in certain cases, despite the presence un-
modeled call uncertainties. The only requirement is
that the uncertainty amplitude bound  ρ  must not
exceed the value  ε(α1, ..., αm). This value can be
relatively large, as demonstrated in Example 12
below. Accordingly, sturdy network control tech-
niques can handle substantial traffic uncertainties
without impairing asymptotic efficiency.

The proof of Theorem 11 contains a traffic control
algorithm that achieves asymptotic efficiency of  1
under the conditions of the Theorem. This algo-
rithm is based on the use of feedback, and is de-
scribed in more detail in [11]. When employing this
algorithm, no cells are delayed beyond their limit
and no cells are lost in transfer.



REMARK. Condition (ii) of Theorem 11 remains a
sufficient condition for the achievement of asymp-
totic efficiency of  1  even when restriction (iv) of
Assumptions 5 is released. It can be turned into a
necessary condition in that case by somewhat
modifying the formula of  ε(α1, ..., αm)  (see [11]
for details). ♦

EXAMPLE 12. To demonstrate the significance of
Theorem 11, consider the following special, but
relatively common, case. Assume that one of the
call classes, say  Cm, allows relatively large cell
delays. A common example of such a call class is
the class of computer file transfers. Assume that,
for the class  Cm, the cell delay bound satisfies
τ(m) ≥ T+λ. Let

σm := min {χm1 , ..., χ
m
q } (13)

be the minimal value of the nominal waveform  χm
of  cm. If  Cm  is the class of computer file trans-
fers, then its nominal waveform is usually constant,
and  σm  is equal to that constant value.

Under these circumstances, condition (ii) of Theo-
rem 11 remains a sufficient condition for achieving
asymptotic efficiency of  1, and one can derive
from it the following simplified form (see [11] for
details). If the uncertainty amplitude  ρ  satisfies

ρ ≤ 
αmσm

Σmr=1 αr

 (14)

for some integers  α1, ..., αm ∈ Vm({χ1, ..., χm}),
then the backbone can be operated with asymptotic
efficiency of  1.

As a numerical example, consider the case where
the class  Cm  contributes, say, half of the call
population of the backbone. Then, (14) becomes

ρ ≤ 1
2

σm,

i.e., half of the flow amplitude of computer file
transfers. This shows that asymptotic efficiency of
1  can be achieved even when the uncertainty am-
plitude is at a rather significant level. ♦

To conclude, we have presented some aspects of

the theory of sturdy control of discrete communi-
cation networks. The main advantage of this theory
is that it provides traffic control algorithms that
handle uncertainties without requiring statistical
models and without incurring transmission losses.
In the present note, we have concentrated on the
special case where the deterministic parts of the
calls form a complete family. We have seen that
even in cases of substantial uncertainty amplitudes,
it is often possible to achieve asymptotic efficiency
of  1  without any cell losses.

Appendix

This appendix contains an outline of the proof of
Theorem 11. A more complete theory related to
this proof is developed in [11].

First note that Assumption 5(iv) implies that all
cells that approach the backbone within the time
[1, T]  must clear the buffers by the end of the time
period  [1, T+λ]. Indeed, since all segments of the
partition  {I1, ..., Iq}  are of length  λ, and since all
call waveforms must be constant over each parti-
tion segment by definition, it follows that the flow
over the segment  [T+λ+1, T+2λ]  must be con-
stant. Consequently, if any cells are left in the buff-
ers after the step  T+λ, it will take until  T+2λ  to
clear them all out. This violates Assumption 5(iv).
Thus, all cells of the first call cycle must exit the
buffers during the time  [1, T+λ]. In accord with
this observation, the proof below extends the
transmission cycle to  [1, T+λ]  for incoming calls
of the first call cycle  [1, T].

Now, consider a set of integers  α1 , ..., αm ∈
Vm({χ1, ..., χm}). The linear combination

z :=  Σmi=1  αiχi (15)

of the deterministic parts is then constant and non-
zero over  [1, T]. The corresponding linear combi-
nation of the actual incoming calls is

z(c) := Σmi=1 αic
i.

Assume that  β > 0  copies of  z(c) have been ad-
mitted into the network. There are then  βαi  sam-



ples of the call  ci, i = 1, ..., m. Label the samples of
ci  by

ci,j = χi + υi,j, j = 1, ..., βαi.

The uncertain parts  υi,j  may vary from one sample
of the call to another, and are subject to the restric-
tion  0 ≤ υi,j ≤ ρ.

To simplify our notation, we adopt the (somewhat
unusual) convention of setting

Σji=h si := 0  whenever  j < h,

for any sequence  s0, s1, s2, ...

Now, consider a step  k ∈ {1, ..., T+λ}. Recalling
that  τ(i)  is the maximal delay allowed for cells of
the class  Ci  and using the notation of (6), it fol-
lows the number of cells of the call  ci,j  that must
leave the buffers by the end of the step  k  is

Σθ(i,k)
t=1  ci,jt  = Σ

θ(i,k)
t=1  (χit + υ

i,j
t ).

Consequently, the total number of cells that must
leave the buffers by the end of step  k  is

    N(k) := Σmi=1 Σ
βαi
j=1

 Σθ(i,k)
t=1  (χit + υ

i,j
t ). (16)

Define the quantities

       σi,j := ΣTt=1 υ
i,j
t  ≤ Tρ.

       σ(i,βαi) = Σ
βαi
j=1

 σi,j ≤ βαiTρ, i = 1, ..., m.

       σ(β) := Σmi=1 σ(i,βαi) ≤ βTρ(Σmi=1 αi) =: δ(β).

Then, σ(β)  is the total number of cells included in
the uncertain parts of all admitted calls.

Using the linear combination  z  of (15), define a
rational function  ψ(β)  over the interval  [1, T+λ]
by setting

ψk(β) := βz, k = 1, ..., T,
ψk(β) = σ(β)/λ, k = T+1, ..., T+λ. (17)

Note that  ψ(β)  is constant over the segments  [1,
T]  and  [T+1, T+λ]. The value of  ψ(β)  over
[T+1, T+λ]  is determined by the uncertain parts of
the calls.

Next, for an integer  k ∈ {1, ..., T+λ}, define

σ(k,β) := βρΣmi=1 αiθ(i,k)µ(θ(i,k)),

where  µ(⋅)  is the unit step function and  θ(⋅,⋅)  is
from (6). Then,

βΣm
i=1 Σ

θ(i,k)
t=1  αi(χ

i
t + ρ) =

                       [βΣm
i=1 Σ

θ(i,k)
t=1  αiχ

i
t] + σ(k,β). (18)

Combining this with (16) and the fact that  0 ≤ υi,j
≤ ρ  for all  i  and  j, we obtain

N(k) ≤ σ(k,β) + βΣm
i=1 Σ

θ(i,k)
t=1  αiχ

i
t, (19)

k = 1, ..., T+λ, for all possible uncertainties.

Recalling that  z  is constant over  [1, T], define

ϕk(j,β) := βz, k = 1, ..., T
ϕk(j,β) = σ(j,β)/λ, k = T+1, ..., T+λ, 

j = 1, ..., T+λ. The following is an auxiliary techni-
cal result (compare to [11]).

LEMMA 20. The inequalities

N(k) ≤ Σki=1 ψi(β), k = 1, ..., T+λ, (21)
are valid for all permissible uncertainties if and
only if

βΣm
r=1 Σ

θ(r,k)
i=1  αr(χ

r
i + ρ) ≤ Σ

k
i=1 ϕi(k,β), (22)

                                                       k = 1, ..., T+λ.

Proof. The Lemma is a consequence of the follow-
ing facts.

(i) For  k = 1, ..., T, the right sides of (21) and (22)
are identical.

(ii) For  k = 1, ..., T, formulas (18) and (19) imply
that (21) is valid whenever (22) is valid.

(iii) For  k = T+1, ..., T+λ, note that the inclusion
of an extra cell in the uncertain part of the left side
of (21) cannot increase the right side of (21) by
more than one, since  λ ≥ 1. Thus, the worst case of
the inequalities (21) for each  k = T+1, ..., T+λ  oc-
curs when the uncertain parts included on the left
side are at their maximal level  ρ. The value of the
left side of (21) in that case is given by the left side
of (22).

(iv) Fix a value  k ∈ {T+1, ..., T+λ}. For a given



value of the left side of (21), the smallest value of
the right side of (21) occurs when the uncertain
parts are zero at steps that are not included in the
sum on the left side of (21). At the step  k, such un-
certain parts yield  ψi(β) = ϕi(k,β), i = T+1, ...,
T+λ. Consequently, in this worst case, the right
side of (21) becomes equal to the right side of (22).

In conclusion, (22) describes the worst case of (21),
and whence, if (22) holds, (21) will be valid for all
permissible uncertain parts. ♦

The next statement provides necessary and suffi-
cient conditions for achieving asymptotic effi-
ciency of  1, despite call uncertainties.

THEOREM 23. Let  ci = χi + υi, i = 1, ..., m, be a
family of call classes over the partition  {I1, ..., Iq}
of the interval  [1, T], where the uncertain parts
satisfy  0 ≤ υi ≤ ρ, i = 1, ..., m, ρ > 0. Assume that
the deterministic parts  χ1, ..., χm  form a complete
family of call classes over  [1, T]. Let  τ(i)  be the
cell delay limitation of the class  ci, i = 1, ..., m.
Assume that all partition segments  I1, ..., Iq  have
the same length  λ ≥ 1, and that  τ(i) < 2λ, i = 1, ...,
m. Let  ψ(1)  be the rational function defined in
(17) for  β = 1. Then, the following two statements
are equivalent.

(i) There is a traffic control algorithm that achieves
asymptotic efficiency of  1  for the family  F = {c1,
..., cm}.

(ii) There is a set of integers  α1, ..., αm ∈ Vm({χ1,
..., χm})  for which the following conditions hold:
(a)  Tρ(Σmi=1 αi)/λ ≤ Σ

m
i=1 αiχi , and

(b)  Σmr=1 Σ
θ(r,k)
i=1  αr(χ

r
i + ρ) ≤ Σ

k
i=1 ϕi(k,1),

                                                         k = 1, ..., T+λ.

Proof. Recall from the second paragraph of the Ap-
pendix that the requirement  τ(i) < 2λ, i = 1, ..., m,
implies that all cells of the first cycle  [1, T]  must
leave the buffer system by the end of the step  T+λ.
In other words, all cells that remain stored at the
end of the first call cycle  [1, T]  must be transmit-
ted during the segment  Iq+1 := [T+1, T+λ].

Assume now that part (i) of the Theorem is valid,
and let  φ  be the backbone capacity. Let  Ω(k)  be
the number of cells entering the backbone at the
step  k. Then, in view of Theorem 4, asymptotic
efficiency of  1  implies that  Ω(k)  must be con-
stant  over  [1, T], say  Ω (k) = Ω ', k = 1, ..., T.
Further, since  Iq+1  is a partition segment, all
waveforms, including  Ω(k), must be constant over
it by definition. Let that constant value be  Ω(k) :=
Ω", k = T+1, ..., T+λ. Note that  Ω'  and  Ω"  do not
have to be equal, since new calls can be admitted at
the step  T+1.

Due to the unpredictable nature of the uncertain
parts  υ1, ..., υm, the backbone can be asymptoti-
cally filled over the interval  [1, T]  only if the flow
during  [1, T]  is a combination of the deterministic
parts  χ1, ..., χm. In view of Theorem 4, this implies
that there are integers  β1, ..., βm ∈  Vm({χ1, ...,
χm})  such that  Ω' = Σmi=1 βiχ

i
k, k = 1, ..., T.

Let  β > 0  be an integer greatest common divisor
of  β1, ..., βm. Define integers  α1, ..., αm ≥ 0  by
setting  βi = βαi, i = 1, ..., m. A slight reflection
shows that  α1, ..., αm ∈ Vm({χ1, ..., χm}). The
number of stored cells at the end of the interval  [1,
T]  is then given by  σ(β) := β ΣT

k=1 Σ
m
i=1 αiυ

i
k.

Since all stored cells must be released during the
segment  Iq+1  whose length is  λ, it follows that
σ(β) = λΩ".

For each  i ∈ {1, ..., m}, extend now the call class
ci = χi + υi  of the family  F  to the interval
[1, T+λ]  by setting  χik  := 0  and  υ

i
k  := 0  (whence

c
i
k := 0)  for all  k = T+1, ..., T+λ. We continue to
use the symbol  F  to denote the resulting family of
extended call classes. Denoting  z(c) := Σmi=1  αic

i, it
follows by our discussion so far that

βz(c) = Ω(k), k ∈ [1, T+λ]. (24)

Next, consider a step  k ∈ [1, T+λ]. The fact that
cells of a class  cr  cannot be delayed by more the
τ(r)  steps requires the following: all cells of the
class  cr  that entered the buffer at the step  k–τ(r)
or earlier must leave the buffer by the step  k. In
view of (24), this yields the inequality



βΣm
r=1 Σ

k–τ(r)
i=1  αrc

r
i ≤ Σ

k
i=1 Ωi, k = 1, ..., T+λ

for all  0 ≤ υi ≤ ρ. Condition (ii)(b) follows then
from Lemma 20, since  ϕ(k,1) = (1/β)ϕ(k,β).

To show that (ii)(a) is also required, recall the con-
stant flow  z := Σmi=1 αiχi, and denote

δ := Tρ(Σmi=1 αi)/λ – z.

Assume, by contradiction, that  δ > 0. Consider the
special case where the uncertain parts are at their
maximum, i.e.,  υi = ρ  for all  i = 1, ..., m. Then,
σ(β) = βTρ(Σmi=1 αi), and the flow amplitude  Ω"
during the segment  Iq+1  satisfies

    Ω" = σ(β)/λ = βTρ(Σmi=1 αi)/λ = βz + βδ. (25)

Now, in order to fill the backbone asymptotically
over the interval  [1, T], we have to select  β  as the
integer determined by the division algorithm  φ =
βz + ϖ , where  0 ≤ ϖ < z; this guaranties that the
largest possible number of packages  z  are trans-
mitted (see [10] for more details). Substituting into
(25), we obtain  Ω" = φ – ϖ + βδ. This yields  Ω" >
φ  whenever  β > z/δ, which violates the capacity
limit of the backbone for large values of  β, a con-
tradiction. Thus, we must have  δ ≤ 0, and condi-
tion (ii)(a) must be valid. Together with the earlier
part of the proof, this shows that (i) implies (ii).

Conversely, assume that condition (ii) of Theorem
23 holds. It follows then by Lemma 20 that ine-
qualities (21) are valid for all possible uncertain
parts 0 ≤ υi ≤ ρ, i = 1, ..., m. Since  ψ(1)  is a ra-
tional function with at most two values, there is an
integer  β > 0  such that  βψ(1)  is an integer valued
function. Define the cell flow

Ω := βψ(1).

It follows then by inequality (21) that the following
is true for all uncertainties  0 ≤ υi ≤ ρ, i = 1, ..., m:
the flow  Ω  can transfer the call package  βz(c)
over the interval  [1, T+λ]  without violating the
maximal delay restriction  τ(r)  of any of the call
classes  Cr, r = 1, ..., m. The fact that the flow  Ω  is
constant over the interval  [1, T]  indicates that as-
ymptotic efficiency of  1  over  [1, T]  can be

achieved. Finally, the fact that  Ω  is constant over
Iq+1  and satisfies condition (ii)(b)  shows that, with
the possible addition of new calls, it can achieve
asymptotic efficiency of  1  over  Iq+1  as well. This
completes our proof. ♦

Proof (of Theorem 11). We show that the require-
ment  ρ ≤ ε(α1, ..., αm)  is equivalent to conditions
(ii) of Theorem 23. Recall that  ϕi(k,1) := Σ

m
r=1 αrχ

r
i

for  i = 1, ..., T. By moving the term

Σmr=1 Σ
θ(r,k)
i=1  αrχ

r
i

from the left side of the inequality to its right side,
condition (ii)(b) of Theorem 23 can be rewritten in
the form

Σmr=1 Σ
θ(r,k)
i=1  αrρ ≤ Σ

m
r=1 Σ

k
i=max{1,θ(r,k)+1} αrχ

r
i  (26)

                                                   for  k = 1, ..., T,

and

Σmr=1 Σ
θ(r,k)
i=1  αrρ ≤

             Σmr=1 Σ
T
i=max{1,θ(r,k)+1}  αrχ

r
i + ρσ(k)  (27)

                                           for  k = T+1, ..., T+λ.

Moving the terms with  ρ  in (27) to the left, we get

ρ[Σmr=1 Σ
θ(r,k)
i=1  αr – σ(k)] ≤

                          Σmr=1 Σ
T
i=max{1,θ(r,k)+1} αrχ

r
i  (28)

                                           for  k = T+1, ..., T+λ.

Note that (27) is valid for any  ρ > 0  when the left
side of (28) is negative or zero. Dividing (26) and
(28) by the coefficient of  ρ, yields inequalities
whose right sides are given by the right sides of (8)
and (9), respectively. Finally, observing that condi-
tion (ii)(a) of Theorem 23 can be rewritten in the
form  ρ  ≤ εT+λ+1, we obtain the conditions of
Theorem 11. This concludes the proof. ♦
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