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Abstract—The problem of keeping performance errors within

bounds while controlling a perturbed open loop linear system

is considered. The objective is to maximize the time during

which performance errors remain acceptable, given that the

controlled system is within a specified neighborhood of its

nominal parameter values. It is shown that the optimal solution is

associated with a switching function z(t) which has the following

feature: the optimal input signal is a bang-bang signal when z(t)
is not the zero function.

I. INTRODUCTION

Feedback is often used to reduce the adverse effects of
perturbations and uncertainties on the performance of control
systems. However, feedback data may become unavailable
due to disruptions or failures in feedback components or
communication links. Additionally, economic or convenience
considerations may dictate a policy whereby a feedback chan-
nel is opened only occasionally, when performance degrades
below an acceptable level. It is therefore necessary to de-
velop open loop controllers that maximize the duration of
time during which a perturbed system can operate without
feedback and not exceed acceptable error bounds. Examples of
common applications where such controllers can be of benefit
include a wide range of biomedical applications and networked
control systems. For instance, in medical chemotherapy and
in diabetes it is beneficial to maximize the time between
observations and treatments to increase patient comfort and
independence (e.g., [11]). In networked control systems, the
need to reduce network traffic limits feedback to intermittent
use (e.g., [7], [8], [14] and others). These and other applica-
tions motivate our efforts to develop open loop controllers that
maintain low error operation over extended periods of time.

To introduce the problem in formal terms, consider a system
S whose parameters are not known accurately. Denote by S0
the nominal version of S, and let Se be the system obtained
when the parameters of S are perturbed by e . Here, the exact
value of e is not known; it is only known that e does not
exceed a specified bound d. For an input function v(t), denote
by S0v the response of the nominal system, and let Se v be
the response of the perturbed system. The deviation of the
response caused by the perturbation is then |Se v�S0v|. To
reduce the impact of the perturbation, we design a controller
that adds a ”correction signal” u(t) to the input signal v, so that
the response of the perturbed system becomes Se(v+u). The

deviation between the perturbed and nominal output signals is
then |Se(v+u)�S0v|. As the perturbation e is not known, the
correction signal u(t) must be independent of e . Now, let M
be the maximal deviation allowed for the response, and let t f
be the duration of time during which

|Se(v+u)(t)�S0v(t)|M. (1)

Our objective is to find a correction signal u(t) that maximizes
the duration t f , given that the perturbation e is bounded by d.
In line with physical reality, we assume that there is a bound
K on the maximal input amplitude of the system S.

To simplify calculations, we concentrate in this note on the
case where the nominal input signal v(t) is the zero signal and
where the nominal system S0 has zero initial conditions, so
that S0v = 0. Assuming that feedback is disconnected at the
time t = 0, and letting x0 be the state of the perturbed system
at that time, inequality (1) becomes

|Se u(t)| M for all |e| d and all 0  t  t f , (2)

where |u(t)|K for all t. Our objective can then be described
by the following.

Problem 1. Find a correction signal u(t) that maintains (2)
for the longest time t f .

The control configuration is as follows.

Here, the controller C generates the corrective signal u(t).
The present note characterizes the optimal corrective signal
u(t), paying particular attention to conditions under which the
optimal signal is a bang-bang function. Recall that a bang-bang
function is a signal that switches between its extreme values;
in our case, when u(t) is a bang-bang signal, its components
switch between the values K or �K. Needless to say, a bang-
bang signal is characterized by its switching times, i.e., by the
times at which its components switch from one extreme value
to another. As a result, bang-bang signals are relatively easy
to calculate and implement.

The main results of this note are in section III, where
we show that the optimal input function u(t) is associated
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with another function z(t) that characterizes its features in
the following way. The optimal input function u(t) is a bang-
bang function over all intervals of time over which z(t) is
not identically zero. Over such time intervals, z(t) serves
as a switching function: it determines the times at which
the components of the optimal signal u(t) change sign as
they switch from one extreme value to the opposite one. On
intervals over which the function z(t) is identically zero, it
provides no information about the optimal input signal u(t).
Nevertheless, we show in [2] that, over such intervals, the
optimal input signal u(t) can be approximated by a bang-bang
function. Thus, bang-bang signals underlie our optimization
problem.

Section II outlines the notation and framework of our dis-
cussion and indicates that our optimization problem is a max-
min problem. As a result, the mathematical considerations rely
on the large body of literature available in the area max-min
optimization, including [5], [6], [9], [10], [12] and [13], the
references cited in these works, and others.

II. NOTATION AND PROBLEM FORMULATION

Consider a linear time-invariant continuous-time system S
described by a realization of the form

S : ẋ(t) = A0x(t)+B0u(t), x(0) = x0. (3)

Here, x(t) is the state of S at the time t and u(t) is the input
function at the time t. Denote by n the dimension of x(t) and
by m the dimension of u(t). Then, A0 and B0 are constant
real matrices of dimensions n⇥n and n⇥m, respectively. The
initial state x0 is the state of S at the time feedback was lost
and thus is known.

Perturbations of the system S are represented by uncertain-
ties about the entries of the matrices A0 and B0. To describe
these uncertainties, let d > 0 be a real number. Denote by DA
the set of all n⇥n matrices whose entries are in the interval
[�d,d], and let DB be the set of all n⇥m matrices with entries
in [�d,d]. Then, set

A0 := A+DA,B0 := B+DB, (4)

where DA 2 DA and DB 2 DB. Here, A and B are the nominal
values of the matrices A0 and B0 of (3), respectively, while
DA and DB represent perturbations and uncertainties. It is
convenient to use the notation

D := (DA,DB) and D := DA⇥DB, (5)

so that D 2 D. We refer to D as the uncertainty range. The
only information available about the system S are the nominal
matrices A and B and the maximal uncertainty magnitude d;
the entries of the matrices DA and DB are not known. Recalling
the bound M > 0 of (2), our performance requirement becomes

e(t) := xT (t)x(t)M for all D 2 D and t 2 [0, t f ], (6)

where xT is the transpose of x. For the initial condition we
require xT

0 x0 M, so that performance is within bounds when
the feedback channel is disconnected. Our objective is to find
an input function u(t) that maximizes the duration t f .

Given two m-dimensional vector valued functions a(t) and
b(t), define the weighted inner product

ha,bi=
ˆ •

0
e�ata(t)T b(t)dt (7)

where a > 0 is a real number; the integral is taken in the
Lebesgue sense. The weight function e�at makes the inner
product (7) well defined for all bounded functions. Denote
by La,m

2 the Hilbert space of all m-dimensional Lebesgue
measurable functions with the inner product (7).

Physical systems are subject to input amplitude restrictions
that are determined by the largest amplitude signal components
can tolerate. To characterize these restrictions for a signal with
m components, we use the point-wise `•-norm

ku(t)k= maxi=1,...,m|ui(t)|.

Letting K > 0 be the input amplitude bound of the system
S, all input functions of S must satisfy ku(t)k  K for all t.
With the inner product (7), any bounded Lebesgue measurable
function is a member of the Hilbert space La,m

2 . Denote by

U := {u 2 La,m
2 : ku(t)k  K for all t � 0} (8)

the set of all permissible input functions of S. Then, our
objective is to find an input function u 2 U that drives the
system S so as to satisfy the bound (6) for the longest possible
time, irrespective of the perturbation of S.

A. Problem Statement

The state trajectory x(t) of the system S depends, of course,
on the perturbation matrices DA and DB, as well as on the
input function u. Including these variables in explicit form in
the function x, we often write x(t,D,u) instead of x(t), where
D = (DA,DB). Then, (6) takes the form

xT (t,D,u)x(t,D,u)M for all D 2 D and all t 2 [0, t f ]. (9)

To characterize the time during which xT (t)x(t) does not
exceed the bound M, we define the quantity

T (M,D,u) := inf{t � 0 : xT (t,D,u)x(t,D,u) > M}, (10)

where T (M,D,u) := • if xT (t)x(t)  M for all t � 0. The
fact that the initial state satisfies xT

0 x0  M implies that
T (M,D,u) � 0. Referring to (6), we can see that t f =
T (M,D,u) for the current selections of D and u. As we
show later, the particular form of (10) guaranties that t f is
an upper semi-continuous functional in u, a mathematical fact
that simplifies some of our forthcoming arguments.

Among the variables of the state trajectory x(t,D,u), the
entries of D = (DA,DB) are unknown and unpredictable. As
no feedback is available, the control input function u cannot
depend on D. In order to guarantee that the bound (9) is valid
for all possible D, we must consider the ’worst case’ with
respect to D. This leads us to the quantity

T ⇤(M,u) := inf D2DT (M,D,u), (11)

which describes, for a particular u, the duration during which
(9) is valid for all permissible perturbations D.



The duration T ⇤(M,u) still depends on the input function u,
and we can choose any input function in the set U of (8). Of
course, the best choice is an input function u that maximizes
T ⇤(M,u); this yields the maximal duration

t⇤f := sup u2U T ⇤(M,u). (12)

Assuming that such an optimal input function exists, denote
it by u⇤, so that t⇤f = T ⇤(M,u⇤). The following statement,
which is reproduced from [2], shows that such an optimal
input function u⇤ does exist in the set U . The system S of (3)
is nominally unstable if the nominal matrix A has at least one
eigenvalue with positive real part.

Theorem 2. Assume that the system S of (3) is nominally
unstable and has a non-zero initial state, and let T ⇤(M,u) be
given by (11). Then, the following are valid.

(i) There is a maximal time t⇤f := sup u2U T ⇤(M,u) < •, and
(ii) There is a function u⇤ 2U satisfying t⇤f = T ⇤(M,u⇤). ⇤
Our objective is to characterize features of the optimal

correction signal u⇤(t). As we can see from (11) and (12),
the derivation of the optimal input function u⇤ involves the
solution a max-min optimization problem. We explore some of
the mathematical features of this problem in the next section.

III. CHARACTERISTICS OF OPTIMAL SOLUTIONS

In the present section, we show that an optimal input
function u⇤(t) is often a bang-bang function, i.e., a function
whose components switch between the bounds ±K. When
u⇤(t) is not a bang-bang function, it is shown in [2] that it can
be approximated by a bang-bang function. Being determined
by their switching times, bang-bang functions are relatively
easy to compute and implement.

A. Optimal solutions

To simplify somewhat the analysis of our Optimization
Problem 1, it is convenient to reformulate the problem so as to
turn the terminal time into a constant. This is achieved simply
by introducing a time-scaling factor b > 0, so that the actual
time t is expressed as

t = b s,

where the variable s has the fixed range 0  s  1. Then, b
represents the terminal time t f of the process. To obtain the
maximal time duration, we maximize the value of the scaling
factor b . Denote

y(s) := x(b s) and v(s) := u(b s),s 2 [0,1],

and define the set of input functions

V :=
⇢

v 2 La,m
2 : kv(s)k  K for all 0  s  1 and

v(s) = 0 for all s > 1

�
(13)

Denote ẏ := dy(s)/ds, so that ẏ = bdx/dt. Then, equation (3)
takes the form

S : ẏ(s) = b [A0y(s)+B0v(s)],0  s  1,y(0) = x0, (14)

where the matrices A0 = A+DA and B0 = B+DB are as in (4)
and the input function v(s) is taken from the set V of (13).

Here, the new ”time variable” s is within the fixed interval
[0,1], and is not subject to optimization.

As the solution y(s) of (14) depends on the matrices D :=
(DA,DB) as well as on the number b and on the input function
v, we often denote it by y(s;b ,D,v). Recalling (6), we are then
interested in values of b and in input functions v2V for which

yT (s;b ,D,v)y(s;b ,D,v)M

for all 0  s  1 and for all matrices D 2 D, given that the
initial condition x0 has a magnitude xT

0 x0 M. A slight
reflection shows that the maximal value of b is given by t⇤f
of (12); denote b ⇤ := t⇤f . When the system S is nominally
unstable, it follows by Theorem 2 that the maximal value b ⇤

exists and is bounded, and that there is an input function
v⇤(s) that achieves this maximum. Using the notation of
Theorem 2, we have

v⇤(s) := u⇤(b ⇤s),0  s  1,
b ⇤ = t⇤f .

(15)

Next, define the sets of matrices

{A+DA} := {A0 2 Rn⇥n : A0 = A+DA,DA 2 DA},
{B+DB} := {B0 2 Rn⇥m : B0 = B+DB,DB 2 DB}.

To further shorten the notation, we use

X := {A+DA}⇥{B+DB}.

Let w(s,A0,B0) be a Radon probability measure on the set

P := [0,1]⇥X. (16)

Given a point (s,A0,B0) 2 P, let w(A0,B0|s) be the corre-
sponding conditional probability measure, and let w(s) be the
corresponding marginal probability measure, so that

w(s,A0,B0) = w(A0,B0|s)w(s) for all (s,A0,B0) 2 P. (17)

The next statement, whose proof is provided in section 4
below, is the main result of this note. It introduces a switching
function for the optimal solution of Problem 1.

Theorem 3. Under the conditions of Theorem 2, let (v⇤(s),b ⇤)
be an optimal solution of Problem 1 as described by (15),
and let V be the set of input functions (13). Then, there is
a Lebesgue measurable function z(s) : [0,1] ! Rm satisfying
zT (s)v⇤(s)  zT (s)v(s) for all input functions v 2 V and for
almost all times s 2 [0,1]. ⇤

Theorem 3 has the following important consequence: if a
component of the function z(s) is non-zero over an interval of
time, then the corresponding component of the optimal input
function v⇤(s) must equal either +K or �K over the same
time interval, where K is the maximal input amplitude of the
controlled system S. Indeed, assume that the j-th component
z j(s) of z(s) is positive over the interval [s1,s2] ⇢ [0,1],
and consider the measurable input function v(s) 2 V whose
components are given by

vi(s) :=

(
�K if i = j,
0 if i 6= j.



Then, the inequality zT (s)v⇤(s) zT (s)v(s) of Theorem 3 be-
comes z j(s)v⇤j(s) z j(s)(�K); canceling z j(s) > 0, we obtain
v⇤j(s)�K. As all input functions of S must have amplitude
not exceeding K, the last inequality yields v⇤j(s) = �K for
all s 2 [s1,s2]. When z j(s) < 0 for all s 2 [s1,s2], a similar
argument shows that v⇤j(s) = K for all s 2 [s1,s2]. We can
summarize this discussion as follows.

Corollary 4. Under the conditions of Theorem 3, assume
that all components of the function z(s) are non-zero almost
everywhere in the interval [0,1]. Then, the optimal solution
v⇤(s) of Problem 1 is a bang-bang function, where

v⇤j(s) =

(
�K when z j(s) > 0,

K when z j(s) < 0,

for all j = 1,2, ...,m and almost all s 2 [0,1]. ⇤
Thus, the function z(s) of Theorem 3 is reminiscent of the

classical switching functions that appear in bang-bang control
problems (e.g. [12]). We note, however, that no conclusion can
be drawn about the optimal input function v⇤(s) in intervals
over which z(s) is identically zero. The form of z(s) is:

Corollary 5. The function z(s) of Theorem 3 can be expressed
in the form

zT (s) =
ˆ 1

s

ˆ
X

y(z ,A0,B0;b ⇤,v⇤))T eb ⇤A0(z�s)B0

dw(A0,B0|z )dw(z ); (18)

here, w(A0,B0,z) is a Radon probability measure with
support W =

�
(A0,B0,z ) 2 {A + DA} ⇥ {B + DB} ⇥ [0,1]:

yT (z ,A0,B0;b ⇤,v⇤)y(z ,A0,B0;b ⇤,v⇤) = M
 

. ⇤
The proof of Corollary 5 is provided in the next section.

Example 6. Consider the one-dimensional system ẋ(t) =
ax(t)+u(t), where 1.2 a 1.4; |u(t)| 2 for all t; x(0) = 1;
and the output bound is M = 25. Using (18), it can be shown
that z(s) 6= 0 for almost all s2 [0,1] in this case (see [3, 4]). By
Corollary 4, the optimal solution is then a bang-bang function.
A direct calculation yields the following.

Optimal input Response for various a

IV. MATHEMATICAL DELIBERATIONS

A. Preliminaries

The mathematical foundations of our discussion are rooted
in the geometric form of the Hahn-Banach Theorem (e.g., [1],
Ch. 2]), which can be stated as follows. Let S0 and S00 be non-
empty disjoint convex subsets of a topological vector space T ,
where the interior of S0 is not empty. Then, there is a non-zero
linear functional ` on T that separates S0 and S00, namely, there

is a real number r such that `(s0)  r  `(s00) for all s0 2 S0

and all s00 2 S00.
We apply the Hahn-Banach Theorem on subsets of the cross

product space R⇥B, where R denotes the real numbers and
B is a Banach space. For a subset C ⇢ B, denote by C̄ the
closure of C. Two projections are used below:

(i) The projection onto the reals Pr : R⇥B! R : (r,b) 7! r,
and

(ii) The projection P� : R⇥B ! B that singles out pairs
with negative real parts:

P�(r,b) :=

(
b if r < 0,

? if r � 0,

where ? is the empty set. The following auxiliary result is
important for our ensuing discussion.

Lemma 7. Let C be an open convex subset of the Banach
space B, and let S be a convex subset of R⇥B. Assume that
S includes the zero 0, that 0 is an interior point of PrS, and
that 0 2 C̄. Then, one of the following is true:

(i) There is a non-zero linear functional ` : B! R such that
`(c) 0  `(s) for all c 2 C̄ and all s 2P�S; or

(ii) There is an s 2 S for which Prs < 0 and P�s 2C.

Proof: (sketch) As (ii) is equivalent to the relation
C\P�S 6= ?, it only remains to show that (i) is valid when
C\P�S = ?. To this end, note that since S is convex, so is
the projection P�S. Therefore, by the Hahn-Banach theorem,
the equality C \P�S = ? implies that there is a non-zero
linear functional ` : B ! R and a real number a such that
`(c)a  `(s) for all s2P�S and all c2C. By the Lemma’s
assumptions, 0 2 S and 0 2 C̄; hence, 0 2 C̄\P�S, and since
` is linear, we must have a = 0.

Next, we review a generalized notion of the directional
derivative, often referred to as the Gateaux derivative. Let X
be a vector space over the real numbers R, let D be a subset of
X , let V be a normed space, and let T : D!V be a function.
Let x,h 2 D be two vectors, and assume that there is a real
number a(h) > 0 such that x + ah 2 D for all 0 < a < a(h).
Then, the right-sided Gateaux derivative DT (x;h) of T at x in
the direction h is the right derivative of T (x+ah) with respect
to a , i.e.,

DT (x;h) := lim a!0+
1
a

[T (x+ah)�T (x)],

where the limit is taken in the norm of V . If the limit exists
for all h 2 D, then T is right Gateaux differentiable at x.

Further, the right Gateaux derivative of T at x is linear in
its direction if

DT (x;ah+bk) = aDT (x;h)+bDT (x;k)

for all real numbers a and b and all valid directions h and k.
Linearity is a rather common feature of the Gateaux derivative.

Next, for a function T : S1 ! S2, denote by T�1 the inverse
set function of T , i.e., T�1[S] := {s 2 S1 : T s 2 S} for a set
S ⇢ S2. The following technical statement is critical to our
discussion (compare to [13]).



Lemma 8. Let Q be a convex subset of a Banach space, let
F be a convex subset of the real numbers R, and let P be a
compact subset of a finite dimensional metric space. Denote
by C(P,R) be the space of continuous functions P ! R. Let
e and M be two positive real numbers, and let G(�e,M) be
the subset of C(P,R) consisting of all functions whose image
is in the interval [�e,M]. Let T1 : Q⇥F ! R and T2 : Q⇥F !
C(P,R) be functions that satisfy the following conditions.

(1) The restriction of T1 to the set (T2)�1G(�e,M) attains
a minimum at the point (q⇤, f ⇤) 2 (T2)�1G(�e,M).

(2) The functions T1 and T2 have right-sided Gateaux
derivatives that are linear in their direction at the point
(q⇤, f ⇤).

(3) The image T2[Q⇥F ] ⇢ C(P,R) includes only bounded
functions.

Then, there is a Radon probability measure w over P and
an w-integrable function l : P ! R such that

(i) |l (p)|= 1 almost everywhere with respect to the measure
w;

(ii)
´

P l (p)DT2((q⇤, f ⇤);(q, f )� (q⇤, f ⇤))(p)dw(p)� 0 for
all (q, f ) 2 Q⇥F

(iii) l (p)T2(q⇤, f ⇤)(p) = max{l (p)(�e),l (p)M} for w-
almost every p 2 P. ⇤

The proof of Lemma 8 depends on the following facts.

Lemma 9. Under the conditions of Lemma 8, the subset of
R⇥C(P,R) given by

W (p) : =
[

(q, f )2Q⇥F

�
DT1((q⇤, f ⇤);(q, f )� (q⇤, f ⇤)),

DT2((q⇤, f ⇤);(q, f )� (q⇤, f ⇤))(p)
�

(19)

is a convex set for every p 2 P.

Proof: (sketch). The Lemma follows directly from the
linearity assumption of Lemma 8(2) and from the fact that Q
is convex.

Allowing the variable p in W (p) of (19) to vary, we obtain
the set of functions P ! R⇥C(P,R) given by

S : = W (•) =
[

(q, f )2Q⇥F

�
DT1((q⇤, f ⇤);(q, f )� (q⇤, f ⇤)),

DT2((q⇤, f ⇤);(q, f )� (q⇤, f ⇤))(•)
�
. (20)

For a subset B of a topological space, denote by Int(B) the
interior of B, namely, the largest open set contained in B. The
following is then true.

Lemma 10. Under the conditions of Lemma 8, let S be the
subset given by (20), and define the set of continuous functions

C := { f 2C(P,R) : f = g�T2(q⇤, f ⇤) and g2 Int(G(�e,M))}
(21)

Then, following are valid:
(i) C is an open convex subset of C(P,R);
(ii) S is a convex subset of R⇥C(P,R);
(iii) If there is a point (q0, f 0) 2 Q ⇥ F at which

DT1((q⇤, f ⇤);(q0, f 0)�(q⇤, f ⇤)) 6= 0, then 0 is an interior point
of PrS;

(iv) 0 2 C̄;
(v) If h 2C, then gh 2C for all 0 < g < 1.

Proof: (sketch). (i) The set C is a shift of Int(G(�e,M)),
so we need only to show that Int(G(�e,M)) is convex. The
latter follows from the fact that G(�e,M) is convex.

(ii) is a consequence of the linearity of the Gateaux deriva-
tives (assumption 2 of Lemma 8) and of the fact that Q and
F are convex sets.

(iii) follows directly from the linearity of the Gateaux
derivatives (assumption 2 of Lemma 8).

(iv) Let 0 < d < 1 be a real number. Then, the function
(1� d )T2(q⇤, f ⇤) is an interior point of G(�e,M). Whence,
qd := (1� d )T2(q⇤, f ⇤)� T2(q⇤, f ⇤) = �dT2(q⇤, f ⇤) is in C.
But then, since 0 = limd!0qd , we have that 0 2 C̄.

(v) Consider a function h 2 C. By (21), we have that
h = z� T2(q⇤, f ⇤) for a function z 2 Int(G(�e,M)). Now
let 0 < g < 1, write gh = g[z � T2(q⇤, f ⇤)], and denote
s := gh + T2(q⇤, f ⇤) = gz + (1 � g)T2(q⇤, f ⇤). Then, since
z 2 Int(G(�e,M)), we obtain for all p 2 P that s(p) =
gz(p)+(1� g)T2(q⇤, f ⇤)(p) < gM +(1� g)M = M. Similarly,
s(p) = gz(p)+(1� g)T2(q⇤, f ⇤)(p) > g(�e)+(1� g)(�e) =
�e . Thus, s 2 Int(G(�e,M)), and, since gh = s�T2(q⇤, f ⇤),
it follows that gh 2C.

Lemma 11. Under the conditions of Lemma 8, assume that
DT1((q⇤, f ⇤);(q, f )� (q⇤, f ⇤)) is not the zero function, and
let C be given by (21). Then, there is a linear functional ` :
C(P,R)! R, not identically zero, such that

`(DT2((q⇤, f ⇤);(q, f )�(q⇤, f ⇤))(•))� 0 for all (q, f )2Q⇥F
(22)

and
`(c) 0 for all c 2 C̄. (23)

Proof: (sketch) In view of Lemma 10, the conditions of
Lemma 7 are satisfied and whence one of the alternatives listed
in Lemma 7 must be valid. Alternative (i) of Lemma 7 yields
(22) and (23). By using Lemmas 10 and 8, it can be shown that
alternative (ii) of Lemma 7 is invalid here, since it contradicts
assumption (1) of Lemma 8 (see [3], [4] for details).

Proof: (of Lemma 8 (sketch)). Applying the Riesz -
Markov Representation Theorem to the non-zero functional
` : C(P,R) ! R of Lemma 11 and using (22) and (23), we
conclude that there is a positive Radon probability measure w
on P and an w-integrable function l : P ! R such that
8
><

>:

|l (p)| = 1 for w-almost all p 2 P;
`(c) =

´
P lcdw for all functions c 2C(P,R); and

w(P) > 0.

(24)

Combining (24) with (22) yields Lemma 8(ii).
Next, denote c⇤(•) := T2(q⇤, f ⇤)(•) : P!R. Then, in view

of (21), every element c 2 C̄ can be written in the form c =
g�c⇤, where g2G(�e,M). Consequently, (23) takes the form
`(g� c⇤)  0 for g 2 G(�e,M). By (24), the latter can be
rewritten in the formˆ

P
l (p)[c⇤(p)� c(p)]dw(p)� 0.



Finally, using the fact that w is a Radon probability measure,
it can be shown that the last inequality implies Lemma 8(iii)
(see [3], [4] for details).

Proof: (of Theorem 3 (sketch)). The proof is based on
Lemma 8. First, introduce the notation

Q := {v(s) 2V : v(s) = 0 for s > 1},
F := [0, t⇤f +1]⇢ R,

where t⇤f is the maximal time of (12). Let P be the set given
by (16). It can then be seen that Q is a convex subset of the
Banach space La,m

2 ; that F is a convex set of real numbers;
and that P is a compact subset of the metric space R(1+nn+mn).
Thus, Q, F , and P fulfill the requirements of the corresponding
quantities listed in Lemma 8.

Recalling the set of matrices D of (5), define the functions

T1(v(s),b ) :=�b , and
T2(v(s),b , p) := yT (s;b ,D,v(s))y(s;b ,D,v(s)), where p 2 P.

A direct examination shows that the functions T1 and T2 satisfy
the requirements of Lemma 8. Using the value b ⇤ of (15), a
direct calculation yield the Gateaux derivatives

DT1((v⇤,b ⇤);(v,b )� (v⇤,b ⇤)) = b ⇤ �b .

DT2((v⇤,b ⇤),(s,A0,B0);(v� v⇤))|b =b ⇤ =

2yT (s,A0,B0;b ⇤,v⇤)
ˆ s

0
eb ⇤A0(s�t)b ⇤B0(v(t)� v⇤(t))dµ(t).

(25)
Denote p := (t,A0,B0). Then, by Lemma 8, there is a Radon
probability measure w over P an w-integrable function l : P
! R such that

|l (p)| = 1 for w-almost all points p 2 P, and´
P l (p)DT2

�
(v⇤,b ⇤), p;(v,b )� (v⇤,b ⇤)

�
dw(p)� 0.

Next, denote y⇤(s) := y(s,A0,B0;b ⇤,v⇤); set b = b ⇤; substitute
(30) into the last inequality; define the function

h(s,t) :=

(
1 for 0  t  s,
0 otherwise,

(26)

where s � 0; and apply Fubini’s Theorem. This yieldsˆ 1

0

⇢ˆ
P

l (p)(y⇤(s))T eb ⇤A0(s�t)B0h(s,t)dw(p)
�

(v(t)�v⇤(t))

dµ(t)� 0. (27)

Now, define the function

zT (t) :=
ˆ

P
l (p)(y⇤(s))T eb ⇤A0(s �t)B0h(s,t)dw(p). (28)

Then, inequality (27) can be rewritten asˆ 1

0
zT (t)(v(t)� v⇤(t))dµ(t)� 0 for all v 2V. (29)

Using the conditional and marginal measures of (17) together
with (26), equation (28) can be rewritten as

zT (t) =
ˆ 1

t

ˆ
X

l (s,A0,B0)(y⇤(s))T eb ⇤A0(s�t)B0

dw(A0,B0|s)dw(s). (30)

Finally, (29) implies the inequality

zT (t)v(t)� zT (t)v⇤(t), (31)

since otherwise one can build a function v00 2V that violates
(29) when selecting v := v00 (see [3], [4] for details). Theorem
3 follows then by switching the names of t and s.

Proof: (of Corollary 5 (sketch)). By Lemma 8(iii), we
have l (p)yT (p;v⇤,b ⇤)y(p;v⇤,b ⇤) = max a2[�e ,M]l (p)a. Now,
for l (p) = 1, the right side is M, so yT (p;b ⇤,v⇤)y(p;b ⇤,v⇤) =
M; for l (p) =�1, the right side is e > 0 while the left side is
negative; hence, l (p) = �1 is incompatible. Thus, l (p) = 1
for w-almost every p2 P, so that w has the support W = {p2
P : yT (p;b ⇤,v⇤)y(p;b ⇤,v⇤) = M}. Finally, (18) follows from
(30) by substituting l (p) = 1 and switching the names of t
and s.
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