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CAUSAL FACTORIZATION AND LINEAR FEEDBACK*

JACOB HAMMER" AND MICHAEL HEYMANNt

Abstract. An algebraic framework for the investigation of linear dynamic output feedback is
introduced. Pivotal in the present theory is the problem of causal factorization, i.e. the problem of
factoring two systems over each other through a causal factor. The basic issues are resolved with
the aid of the new concept of latency kernels.

1. Introduction. In recent years the system theory literature has seen a rapidly
growing interest in questions associated with linear feedback. In the early 1960’s, linear
control theory centered chiefly around quadratic (Gaussian) optimal problems and the
resulting feedback designs. Later, interest in feedback shifted to a variety of so-called
"synthesis" problems. These included the well-known problem of observer design (see
Luenberger [1966]), the pole shifting theorem and related issues (Wonham [1967],
Simon and Mitter [1968], Brash and Pearson [1970], Heymann [1968]) as well as the
decoupling problem (Falb and Wolovich [1967], Gilbert [1969], Wonham and Morse
[1970], Morse and Wonham [1970]). All of these feedback synthesis problems, as well
as many others, were formulated and resolved within the framework of state space
representations. While most of the work was done with the use of conventional state
equations, the work of Wonham and Morse was distinguished by its "coordinate free"
setting and initiated what later developed into the celebrated "geometric theory" of
linear control (see, e.g., Wonham [1979]).

The current growing interest in linear feedback differs significantly from that of the
past both in character and in its source of motivation. While previously the study of
feedback was largely oriented at problem solving, the current interest is motivated by a
desire of gaining insight into the general nature of linear feedback--chiefly from an
algebraic point of view. Much of the motivation for the present trend can be traced back
to the work of Rosenbrock 1970], in which polynomial matrix techniques were used for
the study of a variety of (linear) control theoretic questions. Particularly useful turned
out to be techniques based on polynomial fraction representations of transfer functions
(see, e.g., Heymann 1972], Wolovich 1974], Forney [1975], Fuhrmann [1976]). In this
setting of fraction representations, feedback was first studied in Heymann [1972] (see
especially Chapter 6 therein), and in a polynomial module framework the study of
feedback was initiated by Eckberg [1974]. State feedback also received attention in an
algebraic framework by Morse [1975]. A different approach to the study of linear
feedback was taker in Hautus and Heymann [1978], where the fundamental underlying
object was taken to be the input-output map of the system. There, static linear state
feedback was investigated in an algebraic framework consistent with the setting of the
(classical) module theory of linear realization as introduced by Kalman (see, e.g.,
Kalman et al. [1969, Chapter 10]). More recently, state feedback was also examined
in Fuhrmann [1979] using what he termed "polynomial models", and in Miinzner
and Pr/itzel-Wolters (1979a], [1979b], [1979c] in a module and category theoretic
framework.

While these various approaches to the study of feedback differ from each other
substantially both in the underlying concept and in philosophy, they commonly
converge on essentially the same (standard) issues that characterize state feedback. It is
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446 JACOB HAMMER AND MICHAEL HEYMANN

significant, however, that no success (and, in fact, very little effort, if any) has been
reported in respect to output, as opposed to state feedback. When various fundamental
questions in regard to output feedback are examined, it becomes immediately clear that
difficulties arise that are completely absent in the state-feedback setting. In fact, one
discovers immediately that crucial insight is missing. It turns out that the chief reason for
this state of affairs is the fact that all of the presently existing algebraic theory of linear
systems, and especially that of feedback, rests in one way or another on the theory of
modules over the ring K[z of polynomials and on polynomial matrices. This algebraic
machinery is completely satisfactory to develop a fairly comprehensive framework for
state feedback. It is not adequate, though, to deal with output-feedback where issues
associated with causality become significantly more intricate.

The present paper deals in a comprehensive way with the problem of causal output
feedback. A related question which receives a great deal of attention in the paper and
on which much of the theory hinges is the so-called causal factorization problem. This
is the problem of when a given linear input-output map can be factored over another
one by a causal linear map. Through the resolution of this issue, questions associated
with dynamic causal output feedback are then also resolved. Attention is also given to
the static factorization problem as well as the problem of static feedback where special
emphasis is placed on the state-feedback case.

A crucial role in the present theory is played by the newly introduced concept of
latency. In the discrete time setting, latency expresses "degree of causality" and
(intuitively) refers to the intrinsic delay which inputs encounter before output responses
are produced. Latency is algebraically expressed by modules over the ring K[[z-1]] of
power series (in z -1 over a field K). These modules arise in a natural way when the
concept of causality is studied algebraically and in fact are readily seen to be the natural
algebraic device for the study of feedback.

The paper is organized as follows. In 2 the basic concepts of AK-linear maps,
causality, linear i/o maps as well as linear i/s maps, which have been investigated in
detail in Hautus and Heymann [1978], are reviewed. The conceptual viewpoint, on
which the present investigation of feedback rests, is discussed in 3. An important
technical concept that arises in the algebraic study of linear systems both in connection
with the K[z]-module theory and the K[[z-a]]-module theory is that of "proper
bases" and "proper independence". This is the topic of 4. Section 5 is devoted to the
investigation of causal factorization, the main result being Theorem 5.2 and its
corollaries. Results are also obtained on static feedback (Theorems 5.10 and 5.14). In
6 the problem of invariants is investigated in detail and explicit characterizations are

derived and exhibited. The role of the latency kernels and latency indices is also
discussed. The paper is concluded in 7 with an investigation of the interesting question
of feedback (design) limitations. It is shown that the essential limitation to the
possibility of causal feedback implementation of precompensators is the system’s
latency. In particular, precompensators can be implemented as causal feedback devices
modulo a "precompensator remainder" whose dynamic order need not exceed the sum
of the system’s latency indices.

2. AK-linear maps, causality and input-output behavior. We shall adopt a
terminology and setup consistent with that of Hautus and Heymann [1978].

Let K be a field and let S be a K-linear space. The class of all truncated S-valued
Laurent series of the form

(2.1) s stz-t
t to
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CAUSAL FACTORIZATION AND LINEAR FEEDBACK 447

is denoted by S((z-1)) or alternatively by AS. The polynomial subset of S, i.e., the set of
all elements of AS of the form Y.t<_oStZ -’, is denoted I+S. The power series subset of AS,
i.e., the set of all elements of the form Yt>__oStZ -t, is denoted fl-S. The set AK K((z-I))
of K-valued Laurent series is endowed with a field structure under the operation of
convolution as multiplication and coefficientwise addition. In particular, for a

toPaZ and a =t=6az in AK, the product a is given by

-t

t=to+t6 i=to

and the sum a + a’ is given by

)Z -t

=min (to, t6)

With AK as the underlying field it then follows that, with convolution as the scalar
multiplication and with the usual coecientwise addition, the set AS becomes a
AK-linear space. When S is a finite dimensional K-linear space, say of dimension n,
then so is AS as a AK-linear space. It is readily observed that; under the same opera-
tions of convolution as multiplication and coecientwise addition, the field AK contains
(as subobjects) also (i) the ring K[z ], or in our notation +K, of polynomials in z (ii) the
ring K[[z-X]], or in our notation O-K, of formal power series in z -’, and finally, (iii) the
field K itself. It, thus, follows immediately that the set AS is not only a AK-linear space,
but is simultaneously also an O+K-module, an -K-module and a K-linear space.
As we shall see, these facts turn out to be of central importance in the theory.

Now, we let denote the integers and for an element s AS, given by (2.1), we
define the order of s by

ifs0,
(2.2) ord s :=

if s=0.

If s 0 and to ord s, we call the coecient Sto the leading coecient of s.
Let U and Y be K-linear spaces. We shall call U the input value space and Y the

output value space of an underlying linear system . The AK-linear spaces AU and AY
are then called the extended input space and extended output space, respectively.
Elements u utz-’ AU and y y,z -t A Y, called, respectively, (extended) inputs
and (extended) outputs, are identified with time sequences {ut} and {Yt} (with being
identified as time marker).

Let f: AU AY be a K-linear map. We say that f is time invariant if

/(z. u)= z./(u)

for all u AU, so that f is time invariant whenever it is a AK-linear map (Wyman
1972]). Next, for a AK-linear map f" AU AY we define the order of f by

(2.3) ord := inf {ord fu) ord u 10 u A U}.

If the map f is the zero map then ord f := ; otherwise ord f<. While it is possible
that ord f=- we shall not concern ourselves here with this case and confine our
attention to maps of finite order. This is clearly always the case when U(and hence also
A U) is finite dimensional.

A AK-linear map f" AU AY is called causal if ord f 0 and strictly causal if
ord f > 0. The map f is called order consistent if for each 0 u AU

ord f(u) ord u ord f.
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448 JACOB HAMMER AND MICHAEL HEYMANN

Clearly, an invertible AK-linear map l’ AS AS’ is order consistent if and only if
ord ’- -ord l- A AK-linear map j is said to be order preserving (or instantaneous) if
it is order consistent and ord f 0. An invertible order preserving (and hence causal)
AK-linear map AS - AS is called a bicausal isomorphism (or simply bicausal) since
its inverse is then also causal. Finally, we call f nonlatent if it is order consistent and
ord f 1.

We now introduce the following (see also Hautus and Heymann [1978]).
DEFINITION 2.4. A map f" AU - AY is called an extended linear input-output map

(or extended linear i/o map) if it is strictly causal (i.e., ord f > 0) and AK-linear.
Let L denote the K-linear space of K-linear maps U- Y and let AL denote the

AK-linear space of all L-Laurent series. We identify this space with the space of
AK-linear maps AU - AY of finite order as follows. We define the K-linear maps

t" U AU" u u (canonical injection),
(.5)

p AY Y" Zy,z- y.

and with every AK-linear map f" AU AY we associate the Laurent series

(2.6) Zr(z -) := ZAtz-’,
where, for each k e ,
(2.7) A:=Ak(f):= f" ru.
The Laurent series (2.6) is called the impulse response or the transfer function of f. If
u Zutz -t AU is any element, then the action of on u is given by

(2.8) ’ U (At(f3z-t) (Utz-t) 2 2 (Ak(f3ut-)z-t"
k

It is thus immediately seen that

(2.9) ord f= min {klA() 0},

whence we have the following characterization of causality in terms of the transfer
function" The map f is causal gand only gAk(f) 0 for k < 0 and strictly causal gand
only gAk (f)= 0 for k O. We also have the following easily verified proposition.

PROPOSITION 2.10. Let f’AUAY be a AK-linear map of order ko (<m) and
transfer function Zf(z -) =koAkZ -k Then f is order consistent g and only g Ako is
infective (i.e., ker Ako 0).

The following is an immediate corollary to Proposition 2.10.
COROLLARY 2.11. Let I’ASAS be a causal AK-linear map with transfer

function ZoA(f)z-. Then is a bicausal isomorphism g and only g Ao(f) is
invertible, in which case Ao( f-) (Ao( ))-a.

We associate with an extended linear i/o map f a restricted linear i/o map f which is
obtained as follows (see also Hautus and Heymann [1978]). Inputs are restricted to the
subset +Uc AU, called the restricted input space, and consist of all inputs that
terminate at 0, i.e., elements of the form tNOUtZ-t. Outputs are observed only for

1, that is, in the subset z--Y which is, of course, in bijective correspondence with
the O+K-quotient module F+Y := A Y/O+Y which we call the restricted output space.
The restricted linear i/o map ’ O+U F+Y associated with is then defined by

f= "I

where j+" fl+U AU is the canonical injection and +" AY F+Y is the canonical
projection. Clearly, since + and j+ are fl+K-module homomorphisms, so is also and
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CAUSAL FACTORIZATION AND LINEAR FEEDBACK 449

we have the following:
DEFINITION 2.12. A map [" f/+U --, F+Y is called a restricted linear i/o map if it is

an l+K-module homomorphism.
Next, we define the linear output response (or output value) map f" fl+U Y

associated with a given linear i/o map/r (or D as follows"

(2.13) f fl+U- Y" u -f(u) p, (u) p, [(u),
where (identifying F+Y with z-lf-Y)

(2.14) PI" F+Y Y" y,z-’--, y,.
t=l

A linear i/o map/r (or/r) is called reachable if the associated output value map f is
surjective.

If f" l+U Y is any K- linear map, it can be regarded as an output value map of a
linear system. In particular, the restricted and extended linear i/o maps associated with

f are then given by

(2.15) )(,u) X f(ztu)z -t-l, U I"+U,
t=>o

and
(2.16) (u) Y f(Sl’+(ztu))z -t-l, u AU,

where 1’+" AU -+ f+ U" utz-’-> Y-_o_UtZ.-t is the truncation operator.
The relation between the maps f, f and f is summarized by the commutative

diagram, Fig. 2.1, in which denotes the identity map.

AU -- A
ft+U F+y

I+U ,
FIG. 2.1

The output value map f, which gives for each (restricted) input the value of the
output at time 1, is clearly a K-linear map. In some special cases, there exists an
D,/K-module structure on Y, compatible with its K-vector space structure, such that
the output value map f is not just K-linear but is also an I)+K- module homomorphism.
When this is the case, then for each u I)+U and for each positive integer k, f(zku)
z kf(u), whence, by (2.15), knowledge of the output value at time t= 1 implies
knowledge of the whole ensuing output sequence. This is therefore precisely the case
when the system’s output "qualifies" as state, a fact which motivates the following
definition (for greater detail the reader is referred to Hautus and Heymann [1978])’

DEFINITION 2.17. An extended linear i/o map f: AU--> AY is called an extended
linear input-state (or i/s) map if there exists an l)/K-module structure on Y, compatible
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450 JACOB HAMMER AND MICHAEL HEYMANN

.+with its K-linear structure, such that the output value map f =/51’ f’! is an D.+K
homomorphism. The associated restricted map iv is called a restricted linear i/s map.

If Y and W are K-linear spaces and H" Y W is a K-linear map, then it induces in
a natural way a AK-linear map which we call static as follows:

(2.18) H AY ---) m W" ytz-t---)(Hyt)z -t.
In a similar way H induces also static f/K and f-K-homomorphisms.

We shall need the following characterizations of linear i/s maps, from Hautus and
Heymann [1978].

THEOREM 2.19. If f" AU - AY is an extended linear i/s map then

(2.20) ker/= ker ).
THEOREM 2.21. Let" AU AYbe a reachable extended linear i/o map. Then the

following are equivalent"
(i) f is an extended reachable linear i/s map.
(ii) Condition (2.20) holds.

(iii) For every extended linear i/o map g" AU AWsatisfying kerf c ker g (where
and , are the corresponding restricted i/o maps and where W is a K-linear space) there
exists a unique static map H" AY AWsuch that , H f.

3. Feedback and causal factorizationmgeneral considerations. We shall be
concerned with the setup described by the block diagram in Fig. 3.1.

FIG. 3.1

Here f’ AU AY is an extended linear i/o map, called the open loop system, g" A Y
AU is a causal AK-linear map called the (output) feedback compensator, /pr" AU - AUis a AK-linear bicausal isomorphism called (bicausal) precompensator and /po" A Y
AY is a AK-linear bicausal isomorphism called (bicausal) postcompensator. In case any
of the maps g, Ipr or /po is static we shall call it, respectively a static feedback, pre or post
compensator.

Now, since the map g is causal and f is strictly causal, it readily follows that the
composite maps f g’ A Y AY and g f’ AU AU are both strictly causal. Letting I
denote both of the corresponding identity maps, we see that both of the maps
(I + gf) AU AU and (I + fg) AY AY are bicausal isomorphisms. It follows that
the setup of Fig. 3.1 is "well-posed" in the sense that there is a strictly causal AK-linear
map AU A Y’ v w given by either of the following composite maps:

(3.1) v w 1-oo f" (I + gf---)-I l-or](V),
(3.2) /) W [/-po" (I -[- Tg)-1" f’ l-pr](U).
Using again block diagrams, (3.1) and (3.2) can be described, respectively, as in Fig.
3.2a and 3.2b.

In both descriptions, the dashed blocks represent bicausal mappings, so that
the compensator configuration of Fig. 3.1 can always be represented equivalently
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CAUSAL FACTORIZATION AND LINEAR FEEDBACK 451

(I + gf)-i
u w

(a)

or I, (l / f)

FIG. 3.2

(6)

by the original system preceded and followed by bicausal compensators, with the
feedback compensator represented, as one chooses, either as a precompensator or a
postcompensator.

Because of the obvious duality between the precompensator situation and the
postcompensator situation, there is no need to discuss both of them in detail. Since
practical interest in postcompensators is at best limited, we shall henceforth confine our
attention to precompensation, and discuss postcompensators only in connection with
certain mathematical questions.

For various reasons, not to be elaborated on here, feedback compensation is
preferred over external compensation whenever possible. Thus, one is interested in the
following problem.

Causal feedback problem 3.3. Let f" AU AY be an extended linear i/o map.
(a) Under what conditions can a given bicausal AK-linear isomorphism l" AU -AU be represented as feedback, i.e. under what conditions do there exist a static map

L" AU AU and a causal AK-linear map " AY A Y, such that --1 L + f?
(b) Under what conditions (on f) can every bicausal be represented as feedback?
Let AU AU be a bicausal AK-linear map, and let

Z r-l(Z-1) Ltz -t

t=0

denote the transfer function of --1. We can then write

Z r-l(z -1) Lo + Y Ltz -t Lo + Z/(z-1),
t=l

where Lo is a static AK-linear map and Z(z -1) is the transfer function of a strictly
causal map /" AU-AU representing the strictly causal part of --1. Hence we can
always decompose the map --1 as

-l=L+h-
with L static and h strictly causal. The causal feedback problem 3.3 is therefore
essentially equivalent to the following.

Causal factorization problem 3.4. Let f’ AUAY be a given strictly causal
AK- linear map.

(a) Under what conditions can a strictly causal AK-linear map h" AU AU be
factored causally over f, i.e., when does there exist a causal map g’ AY AU such that
h=.f?

(b) Under what conditions can every strictly causal AK-linear map h AU- AU
be factored causally over f?
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452 JACOB HAMMER AND MICHAEL HEYMANN

It is readily noted that the strict causality of the maps f and h is inessential to the
causal factorization problem, and arises in problem 3.4 only because of the specific
requirements of the feedback problem. Indeed, if h factors causally over f, i.e., if there
exists a causal g such that/= f- then for each integer k we also have zk/ zkgl=
g (zff) so that zhfactors causally over z) and for sufficiently large positive k (unless
/ or/v are zero) the maps zk/ and zk/r are not causal. Thus, the causal factorization
problem can be stated in the following less restrictive way"

Given two AK-linear maps f’ AS AY and h" AS AW (where S, Y and W are
K-linear spaces), when does there exist a causal AK-linear map g" A Y - AW such that
the following diagram in Fig. 3.3 commutes

AS AW

AY

FIG. 3.3

If the causality requirement of is dropped, the factorization problem is standard
(see, e.g., Greub [1.967]) and h factors over f if and only if ker f ker h. Yet this
condition does not say anything about the causality of g. To deal efficiently with the
causality issue, we reintroduce the concept of causality using an approach which is
algebraically more tractable.

Let f" AU AY be a AK-linear map. We can characterize causality of f as follows
(compare with our definitions of causality in 2)"

(3.5) The map f is causal if and only if u f-U implies f(u) f-Y.

Similarly, we have"

(3.6) The map f is strictly causal if and only if u zII-U implies f(u) e D,-Y.

Let us denote the 12-K-quotient module A Y/12-Y by F-Y, and let 7r-" A Y F-Y
denote the canonical projection. The following can then be easily verified by the reader.

PROPOSITIOrq 3.7. Let f" AU- AY be a AK-linear map.
(a) The map f is causal if and only if I)-U ker 7r-f.
(b) The map f is strictly causal if and only if z I)-U ker zr-f.
(c) The mapis order consistent ifand only if, ]:or some integer k, z
(d) The map f is instantaneous if and only if I)-U ker zr-f.
(e) The map ]’ is nonlatent if and only if z fI-U ker zr-f.
We shall use the characterizations of the above proposition extensively in the

following sections.

4. Proper independence and proper bases. LetK be a field and let S := K’. For an
element 0 s AS, denote by g the leading coefficient of s. If s 0 we shall say that

DEFINITION 4.1. A set of vectors sl, , s AS is called properly independent if
their leading coefficients gl, , s S are K-linearly independent.

Below we derive a variety of properties of properly independent sets, of proper
bases and of proper direct sum decompositions. Our objective is to develop this theory
here only to the extent required in the sequel. Many further results have been omitted,
and the reader can, for example, easily verify that the converses of a number of our
results are also valid. A more extensive exposition of this.and related topics will be
published elsewhere.

D
ow

nl
oa

de
d 

03
/1

5/
17

 to
 3

8.
98

.2
19

.1
57

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



CAUSAL FACTORIZATION AND LINEAR FEEDBACK 453

LEMMA 4.2. If Sl, Sk E AS is a properly independent set of vectors, then (i) it is

AK-linearly independent, and (ii) for every set of scalars a 1," , ak AK the following
holds"

k

ord Y aisi =min {ord aisili 1,..., k}.
i=1

Proof. We shall prove the lemma by showing that if either (i) or (ii) fails to hold
then the set sl, , sk is not properly independent. If al, , ag AK is any set of

k
scalars then, by definition, ord "i=10giSi r:=min {ord agsgli 1, , k}. If either (i) or
(ii) fails to hold, there exist a 1, , ak AK, not all zero, such that either=10giSi 0

k
or ord "i=10l’iSi > r. For each i= 1,..,, k define

1 if ord Ol.iS r,
Ei :--

0 if ord Ol.iS > r,

k
and consider the terms of order r in ,Ol.iSi. This yields "i=1 EiOgiSi "--O, implying that
gl, ’, Sk are K-linearly dependent since not all the Eiti are zero. Hence S , sg are
not properly independent, completing the proof.

The condition of Lemma 4.2(ii) has been called the "predictable degree property"
ih Forney 1975], in the (analogous) setting of "minimal polynomial bases" for rational
vector spaces. We shall adopt this terminology and call the property of Lemma 4.2(ii)
the predictable order property.

DEFINITION 4.3. Let c AS be a AK- linear subspace. A basis {Sl, , Sk } of is
called proper if the vectors s1,’", Sk are properly independent. The basis is called
normalized if for each 1,. ., k, ord sg 0.

To avoid possible confusion in the ensuing discussion where we shall deal with both
K-linear and AK-linear spaces, we shall use subscripts to emphasize the field. Thus, for
example, spanAK {Sl," ", Sk} denotes the AK-linear subspace spanned by Sl, , Sk
AS, whereas spanK {fiX, ffk} denotes the K-linear subspace spanned by
S. Similarly, dimAK denotes the dimension of a subspace c AS as a AK-linear space
(to distinguish from K-linear). We next have the following theorem.

THEOREM 4.4. Every nonzero AK-linear subspace AS has a proper basis.
Moreover, every properly independent subset of can be extended to a proper basis.

Proof. Let 0 s E be any vector. Then S is properly independent. We shall
complete the proof by showing that if sl, , s are a properly independent set and
ifk := spanAK {S 1, ", Sk } is a proper subspace of , we can find a vector Sk/ such
that the set {sl,’’’, Sk, Sk/l} is also properly independent. The proof is by contradic-
tion. Assume that k c is a proper subspace, let s/l be such that the set
{sl,’’’, Sk, S/I } is AK-linearly independent and, without loss of generality, assume
that this set is also normalized. Let k/l := spanAK {Sl, ", Sk, S/I} and suppose that
there is no vector s k/l such that the set {sl, , Sk, S} is properly independent. This
means that for each s E k+l, . k :-" spank {gl,""", gk}, contradicting, as we shall
see, the AoK-linear independence of Sl," ,kSk, Sk+I. Indeed, we observe that there are
scalars a 1," , a k K such that +1 Yi=l tĝsg. Let n0:=O and set Sk+I :--Sk+l-

k
g= a z sg, so that ord s ,+1 > ord s k +1. We now form a sequence of vectors {s , +1 },
0, 1, 2, , with s ,/1 Yk/1, such that ord s k/ > ord s ,

/1 for all 0, 1, 2, as
t+l k

follows" For each t, set nt ord s,/l and let s k/l :-- S/I g= a gZ Si, where the
scalars a , a , K satisfy the condition that s+1 i= a isi. Upon defining

k
ai := ,to a iz AK, 1, ., k, it is readily verified that s k+l Yi= aisi O,
whence s/l k, a contradiction.
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454 JACOB HAMMER AND MICHAEL HEYMANN

COROLLARY 4.5. Let c AS be a AK-linear subspace. Then dimA dim:,
where := spank {g]s Y }.

Let Y c AS be a AK-linear subspace. If Y =Yl(R)Y2 is a direct sum decom-
position of Y into AK-linear subspaces Y and Y2, then, in general, f3 2 7(: 0 SO that
-1+2. This leads us to the following
DEFINITION 4.6. A direct sum decomposition Y=YlY2 of a AK-linear

subspace c AS into AK-linear subspaces Yl and 2 is called proper if 1 (’1 2 =0.
The subspace 2 is then called a proper direct summand of 1.

With the aid of Corollary 4.5 it is readily seen that a direct sum decomposition is
proper if and only if 1 + 2. Thus, 1(2 is a proper decomposition if and
only if there are proper bases Sal, ’, Skl of Yl and s21, Szk2 of2 such that the set
six," ’, sl, szl,. , sz2 is a proper basis of . We then have the following further
corollary to Theorem 4.4.

COROtLAR 4.7. Let AS be a AK-linear subspace. Then every AK-linear
subspace YtI has a proper direct summand in .

Finally, we also have the following variant of the predictable order property.
COROLLARY 4.8. Let 2 be a proper direct sum decomposition of a

AK-linear subspace AS. Let s S + s2 be the representation ofany vector s , with
si i, 1, 2. Then ord s min {ord Sl, ord s2}.

Proof. By definition, ord s -> min {ord s l, ord s2}. If the above inequality is strict,
there exist scalars al, 2 K, not both zero, such that aga + 22 --0 contradicting the
fact that 1 52 0. [3

5. Causal factorization. We turn now to the causal factorization problem (3.4). As
we mentioned earlier, there is no essential need, in characterizing causal factorizability,
to assume strict causality, or even causality, of the maps under consideration. We shall
therefore begin with the general case and turn to specific consideration of i/o maps later
on. We shall assume that the spaces U and Y are finite dimensional, in particular that
U K and Y Kp. For convenience of notation, we shall temporarily use the
notation AU and A Y also in connection with AK-linear maps f" AU --> A Y that are not
necessarily i/o maps (i.e., are not necessarily strictly causal).

Let f’AU-AY be a AK-linear map and let zr-’AY-F-Y:=AY/I-Y be the
canonical projection. Since -Y is an fl-K-module, so is the quotient A Y/-Y. Thus
the map zr- is an l-K-homomorphism and so is also the composite r-f. We have

LEMMA 5.1. Let f" AU - AY be a AK-linear map and let zr- A Y - F- Y be the
canonical projection. If Y ker zr-f is a AK-linear subspace, then Y ker f.

Proof. Assume u
ker zr-f for all a AK. Thus f(au)=af(u)l-Y for all a AK, whence f(u) 0 and
u ker f as claimed.

Next we have the following central theorem.
THEOREM 5.2. Let f: AU - AY and h" AU AW be AK-linear maps, where U,

Y and W are finite dimensional K-linear spaces. There exists a causal AK-linear map, A Y AWsuch that h g f if and only if ker rr-f c ker rr- h.
Proof. Suppose h g f with causal. Let u ker rr-f. Then f(u) YUY, and by

causality of g (see Proposition 3.7(a))
whence u ker rr-g f ker rr-h. Conversely, assume that ker rr-f c ker rr-h. By
Lemma 5.1 this implies that kerf ker h whence by a standard theorem of linear
algebra (see, e.g., Greub [1967]) a AK-linear map g’ AY AW such that h g. f
exists. It remains to be shown that the map g can be selected to be causal. To this end
write AY Im f Y, where Im f is the image of f and 5 is any proper direct summand

D
ow

nl
oa

de
d 

03
/1

5/
17

 to
 3

8.
98

.2
19

.1
57

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



CAUSAL FACTORIZATION AND LINEAR FEEDBACK 455

(see Corollary 4.7). Let go" A Y AW be any AK- linear map that satisfies the condition
that h o" f and let gl" Im f- AW be the restriction of o to the image of f. Let
p" A Y - Im f denote the projection onto Im f along Yt; that is, if y y "+- Y2 t A Y is the
decomposition of y into its components Y e Im f and y2 e Yt, then py yR. Clearly, p is
AK-linear, and we shall see that the map g ga’p satisfies the conditions of the
theorem. First observe that for u e A U,

f(u)= 1" pf(u)= of(u)= h(u),

so that g. f h. To see that g is causal, let y ya + y2G -Y, where ya e lm ]" and
y2 G . By Proposition 3.7(a), the proof will be complete if we show that y 6 ker rr-.
Indeed, Corollary 4.8 implies that both ya and y2 are in D.-Y so that . y a" py
1 ya o" f(u) for some u ker rr-fi But by hypothesis ker 7r-f c ker rr-h, whence, y ,o f(u) h(u) I)-W so that y e ker 7r as claimed.

Theorem 5.2 clarifies the significance of the f-K-module ker 7r-f in connection
with the causal factorization problem (and consequently also with feedback). We call
this module the latency module or latency kernel of f.

COROLLARY 5.3. Let f" AU- AY be a AK-linear map of finite order. Then f is
order consistent if and only if for every AK-linear map h" AU AW which satisfies
ord h _-> ord f there exists a causal AK-linear map , A Y AWsuch that h

Proof. Recall that a map f is order consistent if ord f(u)-ord u ord f for each
0 u A U. Suppose f is order consistent and ord h _-> ord fi Let 0 u e ker 7r-f. Then
f(u)fl-Y and ord f(u)>--O. Now ord h(u)-ord u _->ord h _->ord f=ord f(u)-ord u,
whence ord/(u) _-> ord/(u) _-> 0, so that u e ker zr-h-, implying that ker 7r-fc ker zr-h-.
By Theorem 5.2 the existence of a causal such that h =. f is thus assured.
Conversely, suppose f is not order consistent and that h is an order consistent map
satisfying ord h =ord fi Then there exists 0# u eAU such that ord f(u)>ord
ord u =ord/+ord u =ord/(u). If k :=ord )(u), then 0=ord (zku)>ord (zku) SO

that zku ker 7r-/r but zku
_
ker zr-/. Hence ker r-)r ker r-/ and by Theorem 5.2

there does not exist a causal such that h f, completing the proof.
Thefollowing corollary which is an immediate consequence of Corollary 5.3 is of

central interest in our study of causal factorization since it deals with linear i/o maps
and gives us an important characterization of nonlatency.

COROLLARY 5.4. Let f’AUAY be an extended linear i/o map. Then f is
nonlatent ifand only iffor every strictly causal AK-linear map h" AU -, AWthere exists a
causal AK-linear map g" A Y AWsuch that h g. f

Let ]’" AU - AY be an extended linear i/o map and let AU - AU be a bicausal
isomorphism, i.e., a bicausal precompensator for f. Let h be the strictly causal part of
--a i.e --a= L +/ where L is static. As we have seen in 3 - can be realized as
feedback around f if h factors causally over f. Theorem 5.2 tells us essentially that the
only barrier to realizing a bicausal precompensator as feedback is the relative latency of
f and h. Corollary 5.4 characterizes the class of i/o maps over which every bicausal
precompensator can be realized as feedback. These i/o maps are, as we have seen, the
nonlatent maps (a fact which motivated our choice of terminology). Now, a very special
and important class of nonlatent maps is that of injective i/s maps. This fact is proved in
the following theorem.

THEOREM 5.5. Let f" AU AYbe an infective linear i/s map. Then f is nonlatent.
Proof. By strict causality of f we have that z tI-U ker zr-f, so that to prove

nonlatency we need only to show that ker 7r-f z II-U. Let u e ker zr-f so that
7(u) e II-Y. Write u u++ u-, where u/ezII+U and u-eztI-U. The proof will be
completed by showing that u

/ 0 so that u ztI-U as claimed. Note that f(u-) e II-Y
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456 JACOB HAMMER AND MICHAEL HEYMANN

4)by the strict causality of f so that, in view of the fact that f(u) f(u + f(u-), it follows
that/r(u+) D,-Y. By (2.16) we have

(u /) E f(se+(z’u+))z -’-1 f-r,
t’

so that, in particular, f(St’/(z--u+))=O. But z-2u+f/U, whence/(6e+(z-2u+))
f(z-2u +) 0 implying that z-2u + ker f ker )r (the equality being a consequence of
the i/s property (2.20)). It follows that (z-2u +) f+Y, or alternatively, that )V(u +)
z2O/Y. Since z2f+Y fq f-Y 0, we conclude that/r(u/) 0 or that u /= 0 by the
injectivity of f. l-I

While Theorem 5.5 deals only with infective i/s maps, it is important to observe
that this is not a serious restriction. Indeed, it is shown in Proposition 5.6 below that in
the special case of i/s maps (in contrast to i/o maps in general), the kernel is "static";
i.e., if/r is a noninjective i/s map, then ker/r AU where U c U is a subspace. This
means that the whole degeneracy lies in the input value space U which has been chosen
too large, and by restricting the input value space to a proper summand of U in U, the
injectivity is restored.

PROPOSITION 5.6. Let f" AU A Ybe an extended linear i/s map. Then there exists
a subspace U U such that ker )r AU.

Proof. Let i," U D./ U" u u be the canonical injection and define the subspace
U c U as U := kerf. i,, where f is the output value map associated with ] Since f is
an i/s map we have kerf. i, ker )r. i, ker/r. u with the last equality holding by the
strict causality of [- Thus ,(U) ker/ and since ker f is a AK-linear space we
conclude that AU ker ] To prove that ker/re AUo, it suffices to prove that if
0 u =Yt=to utz-t kerf then Uto U. By recursive application of the same
argument this will then imply that ut U for all >- to. Now by formula (2.16) we have
f(Sl’+(zku))=O for all k 7/, and since Y+(ztu) Uto the results follow. I-1

The importance of Theorem 5.5 lies in the fact that it tells us that bicausal
precompensation is equivalent, in the sense of solvability, to dynamic state feedback.
Let f" AU AY be an extended linear i/o map. We write (see Hautus and Heymann
[1978]) f H. f, where H is a static output map and f is a reachable i/s map. If f is
injective (which is always the case when kerf does not contain a subspace of the form
AS, 0 S c U), then every bicausal precompensator can be realized as feedback around
]v. That is, we can write every bicausal " AU AU as -a L + ]v, where " AY- AUis a causal AK-linear map and L is static.

Before we proceed with our general investigation, it is worthwhile to record one
more consequence of Theorem 5.2.

COROLLARY 5.7. Let fl, f2 AU AYbe two extended linear i/o maps with Uand
Yfinite dimensional K-linear spaces. There exists a bicausal AK-linear map AY A Y
such that f2 fl if and only if ker r-fl ker 7r-f2.

Proof. First, observe that if a bicausal exists then, by Theorem 5.2, it follows
immediately that ker zr-fl ker zr-f2. Conversely, assume that ker r-fl -ker zr-f2
and write A Y Im f1031 Im f2()2 where1 and2 are proper direct summands.
By Theorem 5..2 there exist causal maps ix, [2. A Y--, A Y such that [lfl f2 and
[2/2 fl. Hence [2. iv ]rl, and letting [1" Im f-1--* A Y denote the restriction of [1
to the image of f-l, it is readily verified that F1 is order preserving. Now, ker 7r-f-1
ker zr-f2 implies that ker fl ker rE, whence dim Im fl dim Im f2 and dim 1
dim 2. Let l"2"1--* A Y be an order preserving map satisfying Im [2 2 and let
p’ A Y--, Im f denote the projection along 1. We claim that the map A Y- A Y:
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CAUSAL FACTORIZATION AND LINEAR FEEDBACK 457

y- llpy + 12(I-p)y is a bicausal isomorphism and that fl f2. Indeed, to see the
latter property, note that for any u 6 AU we have

Ifx(U) l-lPfx(U)+ l-2(I-p)fl(u) "[’1" fl(tt) -1-fx(b/)- f2(b/).

To see the bicausality of it suffices to show that it is order preserving. Indeed, let
y yl + y2 e AY be any element with yl 6 Im fl and y2 1. Then ly llyl + 12y and,
using Corollary 4.8 together with the fact that Im 1 and Im ’2 form a proper direct sum,
we have that ord 1-y =min {ord ’lYl, ord /-2y2}-min {ord YI, ord y2}, where the last
equality follows from the order preserving property of 1 and 1"2. Using Corollary 4.8
again, together with the fact that Im fl and 1 form a proper direct sum, gives that
min{ordyl, ordy2}=ordy whence ord/y=ordy as claimed and the proof is
complete.

Clearly, the bicausal AK-linear map of Corollary 5.7 can be regarded as a
bicausal postcompensator for fl, and there is a kind of duality between feedback and
compensation which deserves some further comments.

Let f" AU A Y be an extended linear i/o map and let/pr" AU AU be a bicausal
precompensator for f. If " AU AU is the strictly causal part of /pr, then the causal
feedback problem is that of existence of a causal AK-linear map g" A Y AU such that. f. The map g can be regarded essentially as a causal (but not necessarily
bicausal) postcompensator for f. Conversely, if Ipo" AY- AY is a bicausal post-
compensator and if " AY- AY the strictly causal part of /po, the dual of the above
causal factorization problem is that of the existence of a causal AK-linear map
g" AYAU such that f.g. Here g can be viewed as a causal, but again not
necessarily bicausal, precompensator for f. Thus the pre- and postcompensator prob-
lems become interrelated through feedback. We can also write down the dual of
Corollary 5.7 regarding the problem of bicausal precompensation.

COROLLARY 5.8. Let fl, f2" AU A Ybe two extended linear i/o maps with Uand
Yfinite dimensional K-linear spaces. There exists a bicausal AK-linear map AU AU, -, -, -,such that f2 f if and only if ker zr [1 ker zr [2, where f and f2 denote the dual
maps of fl and f2 respectively.

In Corollary 5.8 the dual maps ivy, and f-z* can of course be identified with the
transposes of the corresponding maps (or transfer functions) in view of the finite
dimensionality of the underlying spaces.

In Hautus and Heymann [1978], the static state feedback problem was investi-
gated. This is the following problem" Given an extended linear i/s map f" AU- A Y,
under what conditions can a bicausal precompensator l" AUAU be written as
--1 L + Gf-, where L and G are static maps. It was shown there that a necessary and
sufficient condition for the static state feedback problem to have a solution is that

(5.9) ’-l(ker ) c D,+ U,

where/z, f+U F+Y is the restricted i/s map associated with f[ We now turn to the
more general question of static output (rather than state) feedback. As we have been
doing throughout this paper, we focus our attention on the static factorization problem
which is characterized in the following

THEOREM 5.10. Let f" AU AY and h AU AW be AK-linear maps. There
exists a static AK-linear map G" AY
ker Pl h.

Proof. Assume first that G exists so that h G f. Then u ker Pl f implies that
1 f(u) 0, whence/01 h(u) 1 G f(u)= G 1 f(u) 0, so that u ker ,61 h.
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458 JACOB HAMMER AND MICHAEL HEYMANN

Conversely, assume that ker ffl fC ker ffl /. This implies the existence of a K-linear
map G" Y- W such that/51 h G./51 f. By definition of static maps (see (2.18)), we
have that G /71 =/51 G so that pl(h G f) 0. That this implies h Gf 0 is seen as
follows. Suppose to the contrary that (-G. f-)(U)--tzzytz -t :0 for some u AU.
Then there exists k Z such that y 0. Let z-lu and note that p(-Gf()=
Pl tez Ytz-t+k-1 Yk # 0, a contradiction.

We shall conclude the present discussion by specializing our static factorization
results to the case of linear i/s maps. We need the following lemma.

LEMMA 5.11. Let f’AUAY be an injective extended linear i/s map. Then
ker +f +U.

Proof. Let ueker*[ be any element. Then (u)e+Y so that fla. f(u)=0.
+ + + -l-Write u u + u where u e U and u z U. Then by the strict causality of

it follows that f(u-)e- z-2-Y and ffl" f(u-)- 0. Hence ffl" f(u-- +)
Pl" (u)- Pl" f(u-) 0 and u + e ker Pl" f" j+ kerf ker the last equality follow-

+) +ing from the i/s property of f. We conclude that f(u Y so that also (u-)
f(u) f(u +) e fi+ Y. Hence f(u-) e +Y z-2 Y 0 and, by the injectivity of f, u-
0 concluding the proof.

COROLLARY 5.12. Let f" AU + AYbe an injective extended linear i/s map and let
h" AU + AW be a strictly causal AK-linear map. Then there exists a static map G"
A Y + AW such that G fg and only g ker+c ker +.

Proof. If G exists such that G f then u e ker+implies that f(u) e + Y, so
that h(u) G f(u)e O+W and u e ker Conversely, suppose ker +fc ker +.
We will show that this implies that ker ffl f c ker ffa h, from which the existence of G
is insured by Theorem 5.10. Let u e ker ffl f be any element and write u u + + u-,
where u+e O+U and u- z-l-u. Then, by strict causality of both and it follows
that f(u-)Gz-2-Y and (g-)z-2-W yieldin ffl(R-)=0 and plff(R-)=0.
Hence, u u u ker fill SO that u kerf ker f, the last equality following from
the i/s property of f Consequently u+e kerc ker r+fc ker +ff c ker ffl the last
inclusion holding by definition. Thus u=u +u e kerffah, and the proof is
complete.

Let f" AU + A Y be a reachable linear i/s map. Let 1" AU + AU be a bicausal
isomorphism and write f-a L + h where L is static and is strictly causal. Corollary
5.12 can then be interpreted as a solvability condition of the static state feedback
problem. Clearly, the condition of the corollary must be equivalent with condition (5.9)
which was obtained in Hautus and Heymann [1978]. We shall see next (Theorem 5.14
below) that this is indeed the case. We require the following lemma.

LEMMA 5.13. Letf’AU+AYbeanextendedlineari/smapandleth’AU+AW
be a strictly causal AK-linear map. Then ker c ker only if kerfc ker h

Proof. Assume that kerf ker h and let u kerf satisfy h(u) 0. Then there
exists k Z such that +(zku)# 0 SO that by the strict causality of we have that
O#+(zku)e+U and +(+(zku))=(+(zku))O. However, f(zu)=0 and
upon application of Proposition 5.6 we also have that (+(zu))=0, whence
+(zku) ker Thus ker ker and the proof is complete.

THEOREM 5.14. Let f" AU+ AY be a reachable extended linear i/s map. Let

" AU + AUbe a bicausal AK-linear map and write - L + where L is static and is
strictly causal. Then ker +fc ker +ff g and only g -l(ker )c +U.

+.Proof. Suppose ker +fcker Let u ker be any element Then u
L. Hence ueker h, and since ue U we also have that ueker +

+L r+ r+f-1 f- +(ker r+)(ker )c (+L) ker so that (u)e U. Conversely,

D
ow

nl
oa

de
d 

03
/1

5/
17

 to
 3

8.
98

.2
19

.1
57

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



CAUSAL FACTORIZATION AND LINEAR FEEDBACK 459

assume that -l(ker ]) c f+U. This immediately implies that ker ire ker/ whence, by
/ / / /Lemma5.13, kerf=kerh. Nowletukerr and writeu=u +u withu U

and u-6z-XO-U. Then (u-)z-ZO-Y, and since (u)+Y we conclude that
OR. (u +) 0. This implies that u + ker f ker (with the equality holding since is an

+ +. + Ui/s map) so that u e ker ker u Finally, u ker implies that (u +) +
whence [2u-) [(u)- (u +) fl+ Y. But then [(u-) fl+ Y z-fl Y 0, so that

h. This implies that u=u +u ker h,u-kerfkerh, and hence u ker +- + +-

concluding the proof.

6. Faetodzation invariantsexplidt calculation. Throughout this section we
shall assume that U K and Y Kv, and we shall study properties of AU as an
-K-module as well as properties of submodules thereof.

The ring -K is o course a principal ideal domain, and dearly also a Euclidean
domain. The units of fl-K are precisely those elements whose order is zero and each
element 0 a fl-K can be expressed as

-ord
Z 0

where Co f-K is a unit. It is clear, therefore, that all the ideals of I)-K are of the form
(z-k), forming a chain with (z -1) being the unique maximal ideal and the only prime.
Thus, the ring f-K is also a local ring and f-K/(z -1) is a field, isomorphic to the field
Yfo which consists of the units of f-K augmented by zero. We shall make use of the
special properties of the ring I)-K in the ensuing discussion.

For a fixed integer k, consider the subset z -kf-U c A U. Clearly, this subset is an
I]-K submodule of A U. Moreover, while AU itself is not a finitely generated f-K-
module, the submodule z-kl]-U is (and hence is a free module). In fact, it is readily
noted that rankn-r z-k[’-U dimAr AU =dimr U. Indeed, if {el, e,,} is a basis
for U (as well as for AU), then {z-el, ", z-kern} is a basis (i.e., a free generator) for
-kz f-U.

Let 0 # A c AU be an fl-K-submodule. We say that A is of finite order if there
exists a finite integer k such that A z -kfI-U. The maximal integer k for which the
above holds, and which is the least order of elements in A, is denoted ka and is called the
order of A. We define the order of the zero module as infinity. We have the following:

PROPOSITION 6.1. Let O#A AU be an fl-K-submodule. Then A is finitely
generated if and only if it has finite order.

Proof. If A has finite order there exists a finite integer k such that A is a submodule
of z-kfl-U which is, of course, finitely generated. Since I]-K is a principal ideal
domain, A is then also finitely generated. Conversely, if A is finitely generated, say by
elements dl, ,dm A, then clearly A z--kA’]--U, where ka := min {ord d,
1,...,m}.

Let h AU be a finitely generated D.-K-submodule. Then, by Proposition 6.1, it is
of finite order and hence rank A-< dim U (= rn). Let A be of rank n and let d,. ., d,
be a basis for A. Define the iYK-homomorphism D" 12-K" h by De d,
1,.. , n, where e,.. , e, denotes the natural basis for K" (as well as for 12-K). We
can view D also as a matrix with entries in AK by regarding d AKIn(= AU) as the ith
column of D. Conversely, if D is an tn n matrix with entries in AK, we can regard D as
an -K-homomorphism -K AU" e->d, i= 1,..., n, where deAU is the ith
column of D. The image A DI2-K":={Dwlw 12-K’} is an -K-submodule of AU.
Clearly, rank A rank D, where rank D is the matrix rank of D over the ring -K (or
over AK).
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460 JACOB HAMMER AND MICHAEL HEYMANN

Consider now the special case when n m (that is, K"= U) and let D be a
nonsingular rn rn matrix with entries in AK. Then D defines, as above, an lq-K-

homomorphism D,-U AU and also (when simply regarded as a transfer function) a
AK-linear map AU A U. Denoting both maps by the same symbol D, it is readily
verified that the diagram in Fig. 6.1 is commutative,

AU

f-U -AU
D

FIG. 6.1.

where /’- denotes the canonical injection. Since the matrix D is nonsingular, the
AK-linear map D is invertible. We shall say that the matrix D is bicausal if the
associated AK-linear map is bicausal, i.e., if the entries of D are in Iq-K and its
determinant is a unit in this ring (that is, has order zero). In analogy we shall say that a
matrix D is strictly causal or causal if so is the associated AK-linear map. Finally, an
fYK-submodule A DI)-U AU is called a full submodule if rank A m, i.e., if the
matrix D is nonsingular.

THEOREM 6.2. Let A1, A2 AU be finitely generated l)-K-submodules given by
A DxI)-Uand A2 D2fY U. Then A2 A1 ifand only if there exists a causal matrix R
(i.e., with entries in I)-K) such that D2 DR.

The proof of Theorem 6.2 is elementary and will be omitted. The following
corollary will be useful in the sequel.

COROLLARY 6.3. Let A1, A2 AUbe finitely generated fYK-submodules given by
A =DfYU and A2 =D2fYU. Assume that A is full and define R:=D-(D2. Then
A2 A1 if and only ifR is causal with equality if and only if R is bicausal.

Let A AU be a finitely generated D,-K-submodule of rank n and order ka. Then
for all integers/" <= ka, A z -iI)-U and for each integer >= ka we define the submodule
A A by

(6.4) Ai := A fq z-ifY U.

Clearly z-it)-U c z-k,)-U for all j -> k, and it follows that

(6.5) A Alca Ak,x+ . Ai A/ ..
-1As an immediate consequence of the fact that if u At then z

rank A rank A. for all / and the quotient modules
u At+l, it is clear that

(6.6) i :--" At/At+l
are all torsion modules with z -1 as annihilators, that is, for each/" and for each [u
-1z [u 0. Next we shall show that the sequence of quotient modules {@t} is isomorphic

to a chain {St} of (finite dimensional) K-linear subspaces of U, that is, each @t is
isomorphic to a subspace St C U and

(6.7) 0 Skzx-1 Sk,x Skzx+l " St " U.

Indeed, each element in t is an equivalence class [u] of elements in At. A represen-
-k Z -ktative u [u] can be expressed as u .,,=tu,z If u ,k=tuz -k and u"=

are any two elements in the same equivalence class [u] then, since u’-u" At+l, it
follows that u u’. Thus, with each equivalence class [u] is associated a unique leading
coefficient u (of z-t). We can now define the map "yt’@t-- U’[u]-- ut. Naturally the
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CAUSAL FACTORIZATION AND LINEAR FEEDBACK 461

map Yi is K-linear since yi([u]+ [u’]) yi([u + u’]) u. + u and yi(aEu]) yi(Eau])
au.. It is also clear that %. is injective, since ker Yi Ai+l [0]. Now, for each integer
we define Si := Im (y.). Clearly S. is then K-linearly isomorphic to @. and $. S.+1 with

Sk--I 0 for all/" _-> 0. Also, by the finite dimensionality of U, there exists an integer
ka (->ka) such that Ska-1 7 Sk and Ska+j---Sk for all j->0. We call the chain {S.} the
order chain of A, and the sequence of integers {ix.}, Ix. := dim Si, we call the order list of A.
In the special case when A ker rr-f where f is a linear i/o map, we refer to the order
chain and the order list of A, respectively, also as the latency chain and latency list of f.

It is interesting to observe that the integer k a is also the least integer satisfying the
condition that z-1Aj Aj+ for all j >_- k a. Indeed, we have seen that z-lA A.+ for all
/’. To see that z-aAiA.+ if and only if f->_k a, let u= -k2k]+1UkZ. A+ be any

-Ielement. Then we can write u- z u where u -k.Uk+,Z z-’i)-U, and clearly
u -IA. if and only if u’ A. This can hold for every u A+I only if Si+, S., whence
the necessity that/" -> ka. The sufficiency of the condition is an immediate consequence
of Theorem 6.11 below.

Next we have the following useful result.
LEMMA 6.8. Let A AU be a finitely generated fFK-submodule with order chain

{Si} and order list {ixi}. Then dim Sk rank A.
Proof. Let rankA=ix, let da,...,d, be a basis of A and define

Y :=spanA: {d,..., d,}. It is easily seen that Y is the smallest AK-linear space
containing A and dimArY rank A. The AK-linear space Y has a proper basis and (by
Corollary 4.5) dimAzY/= dim 9. But clearly Sk and the proof is complete.

Let {S.} and {S} be the order chains and {ix.} and {ix} the order lists, respectively,
of submodules A and A’ of AU. We shall say that {S} is a subchain of {S.}, denoted
{S}c {Si} if, for all j, S c S.. Similarly we say that the list {ix} is smaller than the list
(ix.}, denoted {ix } < {ix.} if Ix Ix. for all integers . As an immediate consequence of the
definition we have the following,

PROPOSITION 6.9. Let A,A’ c AU be f-K-submodules with order chains {Si} and
{S} and order lists {ix} and {/x}, respectively. If A’ A then {S} {S} and {ix}-< {ixi}.

Let A=AU be a finitely generated fFK-submodule. A set of elements
da,..., dk A is called properly free if the elements are properly independent as
elements of AU (regarded as a AK-linear space), that is, if the leading coefficients
all," , d are K-linearly independent. It is then clear that if dl,. ., d are properly
free they are also free (i.e. independent over the ring I)-K).

DEFINITION 6.10. Let A c AU be a finitely generated FUK-submodule. A basis
dl, , d, of A is called proper if dl, , d, are properly free. The basis will be called
ordered if ord di+x -> ord di for all 1,.. , Ix 1.

THEOREM 6.11. Let A AUbe an l-K-submodule or rank Ix and oforder ka, with
order chain {S.} and order list {ix/}. Then (i) there exists an ordered proper basis ]:or A. (ii)
Ifda,. ., d, is any ordered proper basis ]:or A, then the following conditions are satisfied"

(6.12) ord di for Ixi-1 < j Ixi and ka, ka+x,

For each j 1,..., Ix, the set d, d Si, where is the least
(6.13)

integer such that f <-_

Proof. (i) We shall construct an ordered proper basis for A which, in particular,
satisfies (6.12) and (6.13). Consider the sequence {@i} of quotient modules i defined
by (6.6), of which @k is the first nonzero one. Choose any equivalence class 0 # [d]
lka and let dl e A be any representative of [dl]. Then ord dl kA and dl is clearly
properly free. We proceed stepwise and assume that for ] > 0, da,. ’, di are properly

D
ow

nl
oa

de
d 

03
/1

5/
17

 to
 3

8.
98

.2
19

.1
57

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



462 JACOB HAMMER AND MICHAEL HEYMANN

free elements of A satisfying (6.12)A and (6.13). If/’ < , let k denote the least integer
such that/" < tZk. Then dl, ", dj Sk are K-linearly independent, but they do not span
Sk, since dim Sk k. Thus, there exists an element [dj+l] @k such that for any
representative dj+l Ida.+1], the set all," ", di, d+l Sk are K-linearly independent and
hence the set dl,"’, d.+l is properly free. Clearly (6.13) is satisfied, and since
ord d./l k so is also (6.12). By Lemma 6.8, dim Sk" rank A =/z, so that we finally
obtain an ordered, properly free set of elements dl, , dr A satisfying (6.12) and
(6.13). Let A’ denote the lq-K-submodule of AU generated by dl, , dr. It remains to
be shown that A’= A. Obviously A’ c A and since ord d; -< k

a
for all 1, , tz and

since spanc{,. , ,} Sk, it follows also that Ak c A’. Let u A be any element
and let ord u ]. Then t Si whence there are elements c 1, , c, Iq-K such that
Y’." dkdk= and ord(u-ladg)>f. Proceeding stepwise the same way, wek=l

conclude that there are elements eel,’"", a G -K such that u i=lOgidi d-hi’, with
ord u’ > ka Clearly, Y’i=1 ceidi A’, and since u’ Aka = A’, it follows also that u A’ and
the proof of (i) is complete. To see that (ii) holds, it suffices to observe that for each
integer f, every ordered proper basis dl," ", d, of A has precisely i elements whose
order is less than or equal to j and spanc {all,""’, din} S.. l-]

The following immediate corollary to Theorem 6.11 gives a sharp insight to the
relation between ordered proper bases of l-l-K-modules and their order chain.

COROLLARY 6.14. Let A AU be an lq-K-submodule of rank lz with order chain
{Si} and order list {/.}. Then dl,’’’, dr is an ordered proper basis of A if and only if]or
each f, , ,, is a basis for Si.

We now return to questions connected with our primary objective of studying
causal factorization and feedback. First we have some preliminary facts.

LEMMA 6.15. Let U be an m-dimensional K-linear space and let f" AU - AYbe a
AK-linear map. For each integer f let Ai(/) be the l)-K-subodule of AU defined by
A.(/-) := ker rr-ff-) z-if-U. Then rank Ai(/-) m.

Proof. First note that since &(f-)cz-fl-U, rank A.(])-<m, with equality
obviously holding when f 0, since then ker 7r-f A U. Assume now that f # 0, define
t:=max{j-ordf-, -ordf-} and let uz-tfl-U be any element. Then ordf-u_->
ord f +ord u _->ord f + t_->max {j, 0} and u +/-;(f). Hence z-tfl-U c a;(f) so that
rank Aj(f)_-> m and the proof is complete.

PROPOSITION 6.16. Let Ube an m-dimensional K-linear space and let f" AU --> A Y
be a AK-linear map. Then the following are equivalent

(i) f is injective.
(ii) ker 7r-f is finitely generated.
(iii) rank ker 7r-f m.

Proof. That (ii) and (iii) are equivalent follows immediately from Lemma 6.15 and
the fact that if ker 7r-f is finitely generated it is of finite order, say t, so that
ker r-f At(f). To see that (ii) implies (i), recall that kerf c ker 7r-f so that if
ker f : 0 then ker r-f is not of finite order and hence is not finitely generated. It
remains to be shown that (i) implies (ii). Assume that (i) holds, let y 1,’" ", y,, be a
normalized proper basis for Im f c A Y and let u 1, , u, be the (unique) elements of
AU satisfying f(ui)= yi, 1,. ., m. The proof will be complete upon showing that
ker 7r-f is of finite order and, in fact, we claim that ker 7r-fc z-tfl-U where
t:=min{orduili--1,... ,m}. Indeed, if u sker 7r-f then f(u)sl)-Y and there are
elements O 1, a,, e Iq-K such that f(u) E mi=l aiYi -’.i=1 oif(Lli) f(i=l Ogibli)’
whence u Y." aui so that ord u > t. gl

i-=1

In view of Proposition 6.16, it follows that the latency kernel of a given linear i/o
map f is finitely generated if and only if f is injective, the case which receives, of course,
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CAUSAL FACTORIZATION AND LINEAR FEEDBACK 463

most of our attention. Before proceeding further, a remark on the noninjective case is in
order.

Remark 6.17. It is readily noted that if f’AU-->AY is a AK-linear map, then
ker 7r-f can (always) be written as

ker 7r-f ker f +,
where is a finitely generated full lq-K-submodule of A U. However, in the above
representation, is nonunique except in the special case when f is injective and
ker f 0. If f and f are two AK-linear maps then ker 7r-f1 c ker 7r-f if and only if
ker f + c ker f + 2. While this condition necessarily implies ker f c ker fa, it
cannot be claimed, except in the injective case, that c :. Hence, for computational
purposes it is convenient in the noninjective case to resort to the fact that ker 7r-f
ker 7r-f if and only if Ai(fl) c A.(fa) for all j, where Ai(fi) is as defined in Lemma 6.15.
However, A(fl)A(f2) for all j if and only if A(f)A(f2) for any
min {ord, ord} where g, 1, 2, are any submodules in the corresponding
representations of ker 7r-f. By Lemma 6.15 both Ai(f:) and A.(f2) are full finitely
generated fl-K-submodules of AU so that the situation is thus similar to that in the
injective case.

Let f’ AU - AY be an injective extended linear i/o map and let A ker 7r-f. Then
A=DfI-U is a full, finitely generated lq-K-submodule of AU and the columns
dl, , d of the generating matrix D form a basis of A. We shall next establish certain
properties of possible selections of the matrix D.

PROPOSITION 6.18. Let f" AU - AYbe an infective extended linear i/o map. Write
ker 7r-/r= DfI-U. Then D- exists and is strictly causal; i.e., the elements olD- are in
-1z f-K.

Proof. The existence of D-1 follows immediately from Proposition 6.16. From the
strict causality of f it follows that z f-U c ker 7r-f, whence by Theorem 6.2 there exists
a causal matrix R such that zI DR. Thus D-1= z-lR and z-IR is clearly strictly
causal.

Let A c AU be a full finitely generated f-K-submodule and write zk Df-U. We
call the columns d, , d, of D a polynomial be:is of A if the matrixD is a polynomial
matrix, i.e., with elements in f+K. We call the basis a strictly polynomial basis if its
elements are strict polynomials, i.e., with elements in zf/K. If in addition D is a proper
basis we call it a properpolynomial basis, respectively, proper strictly polynomial basis for
A.

THEOREM 6.19. Let f" AU--> A Y be an infective extended linear i/o map. Then
ker rr-f has a proper strict.ly polynomial basis.

Proof. Let all,’’ ", d,, be a proper basis for ker 7r-/ and for each write di
dij z -j di + d- where di= <0 dijz-i z U and d i_o diz- f-U. Then
zd 7, zf-U ker zr-f, the inclusion following from the strict causality of [. Thus,
there are elements ol.ii -g f--1,..., m, so that zd 7, --Ei=lOiij. Defining the
matrices D := Ida,..., d,,],D := [d,..., d] and A := [ai] we can thus write J0
D +z-A, or alternatively, D (I- z-IA). Since A is causal by definition of the c,
it follows that (I- z-A) is a bicausal matrix. Consequently, by Corollary 6.3, we have
ker 7r-f D-U Df-U so that the columns d,..., d,, of D also form a proper
basis for ker 7r-f. That this basis is strictly polynomial follows directly from the
definition of the di. E!

For an infective extended linear i/o map it is convenient to define a set of
nonnegative integers, called latency indices, which are associated in one-one cor-
respondence with the latency list of . We proceed as follows. Let d1,..., d, be an
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464 JACOB HAMMER AND MICHAEL HEYMANN

ordered proper basis for ker r-f. Then, as we have seen, for each 1,..., m,
ord di-<_-1. We define the latency indices {el," ", urn} of f by ui :=-ord dz- 1. The
relation of the latency indicates with the latency list is clearly established by Corollary
6.14, and if {} is the latency list of f then we have

(6.20) 1) -j- 1 for/--1 < _-< , j kA, kA + 1," ,
where kA =ord ker r-f. Clearly u >- 0 for all 1, ., m, and f is nonlatent if and only
if all its latency indices are zero.

We conclude this section with the discussion of certain invariance properties of the
latency indices. We have seen previously that if fl" AU -* AY and f2" AU AY are two
extended linear i/o maps and if lpo" A Y AY is a AK-linear bicausal isomorphism
such that f2-- /po" fl, then fl and f2 have the same latency kernels; i.e., ker 7’/’-fl
ker rr-f2. If there exist both a bicausal postcompensator as above and a AK-linear
bicausal precompensator Ipr" AU AU such that f2 /po" fl /pr, then ker r-f2 ker
’rr f lpr, and since uker r-fl" /pr if and only if /prb/ ker r-fl, it follows that
Ipr ker r-f2 ker r-fx. Since the map tpr is, in particular, also an l)-K-homorphism
(which we denote /pr) we interpret it as an order preserving D-K-isomorphism
/pr" ker r-f2 ker r-fx. Suppose, conversely, that there exists an order preserving
fUK-isomorphism /pr as above. Fix an integer f and define (as in Lemma 6.15)
Ai(f2 ker "rr-f2. Then, by the same lemma, Ai(f2 is a full finitely generated
submodule of A U, and if dx, ’, d,, is a proper basis for Aj(f2), it is clearly also a basis
for A U. Let /pr" AU- AU be the (unique) AK-linear map whose action on the di’s is
that of /pr. Then, l-pr is order preserving and thus a bicausal isomorphism A U--, A U.
Moreover, since /prU =/prU for all elements u ker r-f2, it follows that /pr ker r-f2
ker r-fx whence ker r-f2- ker or-f1 /pr. Applying now Corollary 5.7 to the above
kernel equality, we conclude that there exists a bicausal AK-linear postcompensator
/po’ AY A Y such that f2 -/po fl/pr. We have just proved the following.

THEOREM 6.21. Let fx, f2" AU - AY be two extended linear i/o maps with U and
Y finite dimensional K-linear spaces. There exist bicausal AK-linear compensators
/pr" AU AUand/po" A Y - AY such that f2 =/po’ fl /pr if and only if there exists an
order preserving l-l-K-isomorphism/pr" ker r-f2 - ker

We now restrict Theorem 6.21 to the injective case to obtain the following
invariance characterization of the latency indices.

COROLLARY 6.22. Let fl, f2" AU- AY be two infective extended linear i/o maps
with U and Y finite dimensional K-linear spaces. There exist bicausal AK-linear
compensators/pr:AU --) AU and/po:A Y- AY such that f2 =/po" fx /pr if and only if
fl and f2 have the same latency indices.

Proof. By the injectivity of fl and f2, both A1 ker r-fx and A2 ker r-f2 are of
rank m, where m dim U, and in view of Theorem 6.21 it needs only to be shown that
A1 and A2 have the same latency indices (or latency lists) if and only if there exists an
order preserving l)-K-isomorphism/pr" A2 Ax. Let dxl, , dl,, and d21, , d2,, be
ordered proper bases for A and A2, respectively, and let D1 and D2 be the correspond-
ing matrices. Then an order preserving isomorphism/pr" A2 A1 exists if and only if the
matrix D1D is bicausal which is easily seen to be the case if and only if ord dlj
ord d2. for all 1,. ., m. Employing Corollary 6.14 completes the proof.

Theorem 6.21 and Corollary 6.22 could, of course, have been stated for any
AK-linear maps and not only strictly causal ones. The proofs did in no way depend on
the causality properties of the maps involved. Also, Corollary 6.22 could have been
obtained as an application of the existence of, so called, Smith canonical forms for
matrices over Euclidean rings (see, e.g., MacDuffee [1934]).
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CAUSAL FACTORIZATION AND LINEAR FEEDBACK 465

7. Precompensation and feedback. Let f" AU-> A Y be an extended linear i/o
map and let ’" AU -> AU be a AK-linear bicausal precompensator. Write --1 L h
where L’ AU --> AU is static and h AU --> AU is strictly causal. We have seen in 5 that
can be realized by a static precompensator (i.e., coordinate change in the input value

space) and output feedback around f (i.e., h f for causal AK-linear map
A U) if and only if ker -f c ker r-h (see Theorem 5.2). When f is a nonlatent map,
feedback realization as above is thus possible for every bicausal map I. In general,
however, feedback realization is not possible for every precompensator . We shall say
that has a (, ,) representation if it can be expressed as -= l-.)= (I + f-)-15 where

" AU --> AU is a bicausal isomorphism and " AY -> AU is a causal AK- linear map. We
call the map 7 in the above representation the precompensator remainder of the
representation. The precompensator can thus be realized as feedback whenever has
a (, ) representation with 5 V, a static map.

In general, the precompensator remainder is dynamic and can be represented as
7 V + 6c where V is the static part of 5 and Oc" A U--> AU is strictly causal, i.e., an
extended linear i/o map. We recall (see, in particular, Hautus and Heymann [1978])

+ .+that the dynamic characteristics of 5c are determined by ker r 5c "I which is an
+K-submodule of I+U and can be represented by

(7.1) kerr Jc’l =kerzr 5. I =D U,

-t- o-t-where D is a polynomial matrix whose columns form a basis for ker zr ! The
degree n of the determinant of D (when D is nonsingular) is the dimension of the
minimal state space realizing tSc. More specifically, if D in (7.1) is selected to be proper,
i.e., the columns of D are properly free (in the sense that the leading coefficient vectors
are K-linearly independent just as in 4 above), then the column degrees trg,

1,. m are the reachability indices of 5c and their sum is ymi= 10"i n deg det D.
It is of interest in selecting a (5, ) pair representing a given precompensator to

choose the representation in such a way that the precompensator remainder has least
dynamic order, i.e., is realizable by a state space of least possible dimension. In this way
the precompensator is realized "as much as possible" by feedback. The following
theorem provides a bound on the dynamic order of the precompensator remainder
which need not be exceeded in the realization of any bicausal precompensator l, and
which is dependent only on the dynamic properties (latency) of the i/o map f under
consideration.

THEOREM 7.2. Let f’AU-->AY be an injective extended linear i/o map with
latency indices V >-" >- Vm. Let AU --> AUbe a bicausal AK-linear map. There exists
a (, g) representation/’or such that the precompensator remainder has (ordered)
teachability indices o’1 >-" >- o’,, satisfying o’i <- ui, 1, , m.

Remark. 7.3. It is interesting to observe that Theorem 7.2 explicitly implies what
we have seen previously, namely, that if f is a nonlatent i/o map, then every bicausal
can be realized as output feedback. Indeed, if f is nonlatent, its latency indices ug are all
zero, whence by Theorem 7.2 there exists a pair 05, g) with 5 having reachability indices
all zero, that is, with 5 static. [-1

To prove Theorem 7.2 we shall need the following lemmas.
LEMMA 7.4. Let U be a finite dimensional K-linear space and let " AU - AUbe a

+ .+ -1 .+bicausal AK-linear isomorphism Then ker r 1 and ker r+O 1 have the same
lists of reachability indices.

Proof. By Hautus and Heymann [1978, Theorem 6.11] the lemma will be proved
upon showing that there exists an order-preserving l+K-isomorphism ker r !

+ --1 ,+ker rr v .! We shall see that the map 5 itself, which is in particular also an order
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466 JACOB HAMMER AND MICHAEL HEYMANN

preserving fYK-isomorphism, satisfies the required properties. Indeed, let :
ket r v ] be any element. Then 5./’+ U and since also U we have

+ -1 +(=O-(6()=O-af+(O()6+U, whenceOker "i completing the proof.
Let f" AU AY be an injective extended linear i/o map and let dl, , dm be a

proper strictly polynomial basis for ker -f (see Theorem 6.19), and write ker w-f
D-U where D =[dl, , din]. Then z-lD is also polynomial and the column degrees
of z-lD are (by definition) the latency indices of Below we shall not distinguish
sharply between maps and their transfer functions. Let -" AU -U’Zutz-t
to utz-t denote the causal truncation. Let N" AU -U be defined as the (unique)
AK-linear map whose transfer function is given by

(7.5) N := -(’-D),
and define the AK-linear maps

(7.6) AU AU" u ND-au,
(7.7) v := -&.

LEMMA 7.8. With and- as defined in (7.6) and (7.7) the following hold true"
(i) ker rr-f ker

+ --1 .+(ii) z-aD+Uker .v ’1
Proof. (i) Let u ker -f. Then u Dw for some w -U and we have &u

ND-au ND-Dw Nw -U since N is a causal map, and hence -u 0 so that_
+uker-. (ii) If uz D Uthen u=z-aDw for some we U, andwehave,

,+ --1using the definitions of g-a and of , -1 u =v z-aDw=(f -)z-Dw
-1 1Dz (F- -N)w. Now, in view of (7 5) the map (F-D N) has a strictly polynomial

transfer function so that z-(F-D-N) is polynomial. Since also w is polynomial it
ljfollows that z (F-D -N)w U, whence u ker - as claimed.

Proof of Theorem 7.2. If is a bicausal precompensator for f and (, ) is a
representation of then F (I . )-, whence F- - -. . -where the map fi - is clearly also causal. By Lemma .4, and - have the same
reachability indices. Hence the theorem will be proved if we can show that F- can be
represented as

satisfying the following requirements: (a) -" AU AU is a bicausal AK-linear map
such that its reachability indices w satisfy w v, 1, .., m. (b) The AK-linear map
$" AU- AU is strictly causal and can be represented as $ . f for some causal
AK-linear map fi" A Y A U. As we see below, the maps and -1 as defined in (7.6)
and (7.7) satisfy the required conditions. Indeed, Lemma 7.8(i) combined with
Theorem 5.2 implies that $ =. [ for some causal . Since f is strictly causal by
definition, it follows that so also is $. Hence condition (b) above holds. To see that (a) is
also satisfied note first that the difference between a bicausal AK-linear map and a
strictly causal one is bicausal (see e.g. Corollary 2.11). Hence the map - is bicausal.
Now Lemma 7.8(ii) implies the requirement on the reachability indices since, in
particular, it implies that - can be realized with state space +U/z-DD+U whose
reachability indices are the column degrees of z-D. (The reader is referred to Hautus
and Heymann [1978] for relevant details on the problem of realization.)

While Theorem 7.2 gives an upper bound on the required dynamic order of
precompensator remainders, it has been, so far, seen only in the nonlatent case that this
bound is tight. It is clear that in general, except in the case of nonlatent i/o maps, the
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CAUSAL FACTORIZATION AND LINEAR FEEDBACK 467

maximal required order of precompensator remainders depends not only on the i/o
map f but also on the specific precompensator under consideration. It turns out that
the bound of Theorem 7.2 is tight, however, in the following sense" There always exist
bicausal isomorphisms for which all precompensator remainders satisfy the condition
that n ]i=1 ri->-’=1 ’g, where n is the minimal state space dimension and the o’ are
reachability indices of the precompensator remainder, and the ’i are the latency indices
of the i/o, map f.

THEOREM 7.9. Let f" AU - AYbe an infective linear i/o map with latency indices
’1, ", u,,,. There exists a AK-linear bicausal isomorphism AU - AU such that the
following holds" If (, g) is any representation of and if or1," , crm are the teachability
indices of the precompensator remainder , then ’ o’i >m ’i.i=1 i=1

Proof. Let d a, , d,, be a proper strictly polynomial basis for ker.zr-f and write
ker r- D-U where D -[dl, , dm]. Then the matrix D1 := z-lD is also poly-
nomial and D[ is causal (see Proposition 6.18). Below we shall use the same notation
interchangeably for matrices and their associated AK-linear maps. Let L"AU AU be
any static AK-linear map such that L+D-; is bicausal. Consider the bicausal pre-
compensator [:=(L+D[a)-a. If /5 is any precompensator remainder for /, then
--1 [-1 ]-1v -5[= L +D -Of for some causal map 5. By Lemma 7.4, j has the same
reachability indices as g-x and the latter has the same reachability indices as Di- -Sf-
Now, we have

D-1 -/5’ j--(I-5. )v. D1)D]-I l-*" D]-1

where [* I-t [" D1 is bicausal because the composite [. D1 is strictly causal, the
latter following since ker zr-]" D1 V-a ker zr-/z=V-1 (zDI)-U z--U. Let
l--,D[a p. O-a be a coprime fraction representation of [* D-a (see, e.g., Heymann
[1972] or Hautus and Heymann [1978]). Then clearly P is nonsingular, and computing
determinantal degrees gives us (because l* is bicausal) that

n :=deg det Q =deg det P +deg det D1 _->deg det Vx.
Since n equals the sum of the reachability indices of the i/o map P. 0-1 the proof is
complete. ]

Note added in proof. The reader is also referred to Emre and Hautus [1980], where
certain solvability conditions for rational matrix equations are given that are related to
the causal factorization problem.
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