
European Journal of Control (2012)3:1–15
© 2012 EUCA
DOI:10.3166/EJC.18.1–15

Bursts and Output Feedback Control of Non-Deterministic
Asynchronous Sequential Machinesg

Jun Peng, Jacob Hammer∗

Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611-6130, USA

The use of bursts—fast outbursts produced by an
asynchronous sequential machine during transition—
can enhance the capabilities of output feedback con-
trollers to overcome uncertainties when controlling non-
deterministic asynchronous sequential machines. The
utilization of bursts involves the development of a new
class of generalized realizations. The latter form the
basis for the derivation of output feedback controllers
that achieve deterministic model matching for non-
deterministic machines. Necessary and sufficient condi-
tions for the existence of such controllers are presented in
terms of a numerical matrix derived from available data.
Design outlines are also included.

Keywords: Asynchronous sequential machines, nonlin-
ear feedback control, realization theory.

1. Introduction

Q1 Asynchronous sequential machines have received con-
siderable attention in the scientific literature for more
than half a century, as they form the building blocks of
high-speed digital computing systems, are used to model
parallel computing environments, and represent processes
in molecular biology ([5]). Component failures, imple-
mentation flaws, design flaws, or genetic flaws in biology
may cause asynchronous machines to develop critical
races and become non-deterministic (e.g., [17]).

∗Correspondence to: J. Hammer, E-mail: hammer@mst.ufl.edu

Until recent years, no general methodology was avail-
able for correcting the faulty operation of asynchronous
sequential machines with critical races. The prevailing
approach was to discard faulty machines and replace them
by redesigned and newly built ones. This approach is
often economically inefficient and may be infeasible when
the defective machine is inaccessible or irreplaceable, as
would be the case, for example, for a senescent biological
process. An attractive alternative is to correct the func-
tionality of a defective machine by adding a feedback
controller.

In Fig. 1, the asynchronous machine ! is controlled
by an output feedback controller C, another asynchronous
machine. The resulting closed loop machine is denoted by
!c. Our objective is to achieve model matching, namely, to
find a controller C for which!c emulates a specified model
!′. As !′ is deterministic, such a controller C eliminates
the impact of the uncertainties caused by critical races
present in !.

In general, an asynchronous machine has two kinds of
states: stable states—states at which the machine rests
until a change occurs in its input; and transient states—
states the machine traverses quickly (ideally, in zero time).
Often, during a transition from one stable state to another,
an asynchronous machine passes through several tran-
sient states. For a user, the operation of an asynchronous
machine is determined by stable states, as the machine
does not linger at transient states.

During a transition from one stable state to another,
the machine ! may generate an output burst—a quick

Received 14 September 2010; Accepted 8 April 2011
Recommended by S. Martinez, A.J. van der Schaft

286-300

286-300

2 J. Peng and J. Hammer

Fig. 1. The control configuration.

succession of output characters representing the transient
states passed along the way. Although a burst occurs (ide-
ally) in zero time, a properly equipped controller can take
advantage of the burst by recording it in a sequential mem-
ory register and using it to gain information about the status
of !. This allows the controller to achieve broader design
objectives.

Output feedback control of asynchronous sequential
machines with critical races was examined in [13, 14]
under the requirement that no bursts be used: controllers
were restricted to using only the current output value of
the controlled machine !. At the cost of a small increase
in controller complexity, the present paper develops con-
trollers with enhanced capabilities by incorporating the
use of bursts. In section 2, we demonstrate by an example
that the controllers developed in this paper can accom-
plish control tasks that are impossible for the controllers
of [13, 14]. Thus, the use of bursts does enhance controller
capabilities.

When an asynchronous machine is in transition, it may
pass quickly and asynchronously through a succession of
transient states. If an input change occurs during such a
transition, it will occur at an unpredictable transient state
of the machine. As the response of a machine generally
depends on its state, an input change at an unpredictable
state may result in an unpredictable response. Thus, to
assure consistent behavior of an asynchronous machine,
it is best to keep the input constant while the machine
is in transition. When this rule is observed, we say that
the machine operates in fundamental mode (e.g., [10]).
For the control configuration of Fig. 1, fundamental mode
operation requires one of the machines ! or C to rest while
the other machine is in transition. In formal terms, we have

Condition 1.1: The configuration of Fig. 1 operates in
fundamental mode when the following are valid:

(i) The machine! is in a stable state while the controller
C is in transition;

(ii) The controller C is in a stable state while the machine
! is in transition;

(iii) The external input v is constant while ! or C are in
transition. !

The present discussion is written within the general
framework of [11, 12, 3, 4, 18, 19, 20 13, 14, 21]. These
studies examine issues related to the control of asyn-
chronous machines, such as the use of state feedback to

eliminate the effects of critical races; the use of output
feedback to control deterministic asynchronous machines;
the use of state feedback to eliminate the effects of infinite
cycles; the use of output feedback to eliminate the effects
of critical races; and the use of state feedback to eliminate
the effects of adversarial inputs. The present discussion
investigates the utilization of bursts in output feedback
control of non-deterministic asynchronous machines. We
demonstrate that the use of bursts endows controllers with
broader capabilities to overcome the impacts of uncertain-
ties caused by critical races (see, for instance, Example 2.5
below).

Additional studies dealing with the control of sequen-
tial machines can be found in [15] and [16], where the
theory of discrete event systems is explored; in [5–9, 2, 1],
where model matching for discrete systems is explored;
in the references cited in these studies, as well as else-
where. The studies listed in this paragraph do not take into
consideration specialized issues related to the operation of
asynchronous sequential machines, such as the distinction
between stable and transient states and fundamental mode
operation.

The present paper is organized as follows. Section 2 for-
mally introduces bursts and their treatment while section 3
develops a generalized theory of realization that facilitates
a simple derivation of necessary and sufficient conditions
for model matching. Section 4 deals with the construction
of observers that utilize bursts. Output feedback con-
trollers that use bursts to achieve model matching for
asynchronous machines with critical races are developed
in section 5. Finally, concluding remarks are provided in
section 6.

2. Bursts and Detectability

2.1. Preliminaries

An asynchronous sequential machine is a sextuple ! =
(A, Y , X, x0, f , h), where A is the input alphabet, Y is the
output alphabet, X is the state set, x0 ∈ X is the initial state,
f : X × A → X is a partial function called the recursion
function, and h : X → Y is the output function. We denote
by A∗ the set of all strings of characters of A and by A+ the
set of all such strings that are not empty. A strict prefix of a
string a1a2 . . . am ∈ A+ is a string of the form a1a2 . . . aq
with 1 ≤ q < m.

The machine ! accepts input sequences u0u1 . . . ∈ A+

and, in response, generates state sequences x0x1 . . . ∈ X+

and output sequences y0y1 . . . ∈ Y+ according to the
recursion

! :
xk+1 = f (xk , uk),
yk = h(xk), k = 0, 1, 2, . . .

(2.1)

Bursts and Output Feedback 3

The step counter k advances by one upon a change of
the input or of the state. The machine ! is an input/state
machine if Y = X and yk = xk for all k = 0, 1, 2, . . .
Here, we use the Moore representation of an asynchronous
machine, so the output function h is independent of the
input uk (e.g., [10]).

A pair (x, u) ∈ X ×A is a valid pair of ! if the recursion
function f is defined at it. A valid pair (x, u) that satisfies
x = f (x, u) is called a stable combination. The machine !

lingers at a stable combination until the input character is
changed. If (x, u) is not a stable combination, then ! gen-
erates a chain of transitions x1 = f (x, u), x2 = f (x1, u), . . .
which may or may not terminate. If the chain terminates,
then there is a state xi ∈ X such that

x1 = f (x, u), x2 = f (x1, u), . . . ,

xi = f (xi−1, u), xi = f (xi, u), (2.2)

and (xi, u) forms a stable combination of !. The state xi is
then the next stable state of x with the input u. If the chain
(2.2) does not terminate, then it forms an infinite cycle.
In the present paper, we consider only machines with no
infinite cycles, so there is always a next stable state.

As indicated earlier, transient states of an asynchronous
machine are not noticeable by users, since a machine
passes through transient states very quickly (ideally, in
zero time). Thus, from a user’s perspective, the behavior
of an asynchronous machine is determined by its stable
states. To characterize the behavior associated with sta-
ble states, we define the stable recursion function s of
! by s(x, u) := x′, where x′ is the next stable state
of (x, u). The stable state machine associated with ! is
!|s := (A, Y , X, x0, s, h).

Two asynchronous machines ! and !′ are stably equiv-
alent if the stable state machines associated with them
are equal, i.e., if !|s = !′

|s. As discussed earlier, stably
equivalent machines are indistinguishable to their user.
Consequently, we write ! = !′ when ! and !′ are sta-
bly equivalent. We can now phrase the objective of our
discussion in formal terms.

Problem 2.1: Model Matching: Given two asynchronous
machines ! and !′, with !′ serving as a model, find
necessary and sufficient conditions for the existence of a
controller C for which !c = !′. If such a controller C
exists, derive a method for its design. !

Next, a critical race is a pair (r, v) ∈ X × A for which
the next stable state can be one of, say, m > 1 states
r1, r2, . . . , rm called the outcomes of the critical race. At
a critical race, the stable recursion function s of ! is set-
valued

s(r, v) := {r1, r2, . . . , rm}.

When a transition chain involves critical races, then the
symbols x1, x2, . . . in (2.2) may represent sets of states.
A set of states S ⊂ X and an input character u ∈ A
form a valid pair (S, u) if (x, u) is a valid pair for
all x ∈ S.

We turn now to the notion of bursts ([4]). In an asyn-
chronous environment, it is impossible to distinguish
between consecutive identical characters of a string, since
the arrival of a repeated character is not a distinguish-
able event. Thus, a string of characters such as aabbbcc
is indistinguishable from the string abc, since there is
no specified time duration to signify the end of one
instance and the beginning of the next instance of the
same character. Repeated instances of the same character
in a string are indistinguishable from a single appear-
ance of that character. This leads us to the following
notion.

Definition 2.2: Let y1, . . . , yq ∈ Y be a set of characters
satisfying yi+1)= yi for all i = 1, . . . , q − 1. Then, the
burst of a string y = y1y1 . . . y1y2y2 . . . y2 . . . yqyq . . . yq
is β(y) := y1y2 . . . yq−1yq, i.e., the string obtained by
removing all repeats of consecutive characters.

For a valid pair (x, u) of an asynchronous machine
! = (A, Y , X, x0, f , h), let x1 ∈ f (x, u), x2 ∈
f (x1, u), . . . , xm ∈ f (xm−1, u), xm = f (xm, u) be a string
of transitions generated by ! from (x, u) and ending
at the stable state xm. Then, the corresponding burst
is the string of output characters β(x, u, x1x2 . . . xm) :=
β
(
h(x)h(x1)h(x2) . . . h(xm−1)h(xm)

)
. !

Consider now the transition chain x, x1, x2, . . . , xm of
Definition 2.2, and set x′ := xm. Due to critical races that
may occur along the way, it might be possible to reach
from the state x to the state x′ via a different chain of
transitions, say one passing through the states x, x′

1, . . . x′
q,

where x′
q = x′. This chain of transitions may result in

a different burst β(x, u, x′
1x′

2 . . . x′
q) generated during the

transition from x to x′. Thus, in general, a transition from
one state to another may be associated with multiple bursts,
depending on the outcomes of critical races encountered
along the way. We denote all these bursts by the symbol
β(x, u, x′), namely,

β(x, u, x′) :=

β(x, u, x′
1x′

2 . . . x′
q)

if x′
1x′

2 . . . x′
q are the states of a

transition chain
from x to x′ with the input

character u;

∅ if there is no transition from
(x, u) to x′.

4 J. Peng and J. Hammer

Here, ∅ is the empty set. A critical race pair (r, v) of !

with the outcomes r1, r2, . . . , rm induces the set of bursts

β(r, v) :=
⋃

i=1,...,m

β(r, v, ri).

The following notation is also needed. For a transition
chain of q ≥ 1 steps through the states x1, x2, . . . xq, the
burst induced by the first q − 1 steps is denoted by

β−1
(
h(x1)h(x2) . . . h(xq)

)
:=

{
β
(
h(x1)h(x2) . . . h(xq−1)

)
for q > 1,

∅ for q = 1.

2.2. Detectability

To achieve fundamental mode operation of the configura-
tion of Fig. 1, we must make sure that Condition 1.1 is
satisfied. In particular, the controller C cannot change its
output character before the machine ! has reached its next
stable state. Thus, C must determine from input and out-
put data of the machine ! whether or not ! has reached
a stable state. This determination, which can be aided by
information extracted from bursts of !, must be made
despite the possible presence of critical races in !. The
need to determine whether ! has reached a stable state
leads us to the following notion ([3, 4, 13, 14]).

Definition 2.3: Let S be a set of states of an asynchronous
machine !. Assume that ! is at a stable combination with
an unspecified member x ∈ S, when the input character of
! switches to u, where (S, u) is a valid pair. The machine
! is detectable at (S, u) if it is possible to determine from
u and the output burst of ! whether ! has reached its next
stable state. !

To discuss conditions for detectability, consider first
a deterministic transition of the machine ! through the
states x1, x2, . . . , xq, from a stable combination with x1 to
a stable combination with xq. In order for this transition to
be detectable, we must be able to determine when its burst
terminates. As discussed in [3, 4], such a determination is
possible if and only if

β−1
(
h(x1)h(x2) . . . h(xq)

)
)= β

(
h(x1)h(x2) . . . h(xq)

)
,

(2.3)

namely, if and only if there is a character change at the
end of the burst. However, when uncertainty is present,
the situation is somewhat more involved. Indeed, consider
the following example.

Assume that the machine ! rests at one of two states,
say x′ or x′′, without it being known whether ! is at x′ or at

x′′ (this would imply that x′ and x′′ produce the same out-
put character). Let u be an input character that forms valid
pairs with both x′ and x′′; let x′

1 be the next stable state of
(x′, u) and let x′′

1 be the next stable state of (x′′, u). Further,
let β ′ := y1y2y3 be the burst generated by (x′, u), and let
β ′′ := y1y2y3y4 be the burst generated by (x′′, u). Then,
we have β ′

−1 = y1y2 and β ′′
−1 = y1y2y3, so that β ′

−1)= β ′

and β ′′
−1)= β ′′, and (2.3) holds for both transitions. How-

ever, when ! presents the burst y1y2y3, it is impossible to
tell whether ! has reached the stable state x′

1 or whether
! is on its way to the stable state x′′

1 , as it is not known
whether ! started from x′ or from x′′. Thus, (2.3) is not
a sufficient condition for detectability when uncertainty is
present. This example leads us to necessary and sufficient
conditions for detectability, as follows. First, some nota-
tion. Given a subset of states S ⊂ X and an input character
u for which (S, u) is a valid pair, denote by

B(S, u) :=
⋃

x∈S,x′∈s(x,u)

β(x, u, x′) (2.4)

the set of all bursts that can be generated from states of S
by the input character u.

Proposition 2.4: Let S be a set of states of an asyn-
chronous machine !, let u ∈ A be an input character
that forms a valid pair with S, and let B(S, u) be the set
of all bursts that can be generated by (S, u). Then, (S, u)

is detectable if and only if the following are true for every
burst b ∈ B(S, u):

(i) b−1)= b, and
(ii) b is not a strict prefix of any burst in B(S, u).

Proof: Let ! be at a stable combination with an unspeci-
fied state x ∈ S when the input character switches to u, and
let x, x1, . . . , xm be the resulting string of state transitions.
Then, the burst is b := β

(
h(x)h(x1) . . . h(xm)

)
∈ B(S, u).

Assume first that conditions (i) and (ii) are valid. Then, by
(i), we can determine the end of the burst b (see [4, Propo-
sition 23]), and by (ii) there is no burst in B(S, u) that
continues beyond the end of b. Hence, ! has ceased tran-
sitions at the end of the burst b. In other words, ! has
reached its next stable state at the end of b, and, as this
is the case for every member b ∈ B(S, u), we conclude
that the pair (S, u) is detectable. Thus, (i) and (ii) imply
detectability.

Conversely, assume that (S, u) is detectable. Then, it fol-
lows directly by [4, Proposition 23] that (i) must be valid.
Now, assume, by contradiction, that (ii) is not valid. Then,
B(S, u) includes two bursts of the form b1 := y1y2 . . . yq
and b2 := y1y2 . . . yt , with t > q. In such case, at the step
q, it is not possible to tell whether ! has reached the end
of the burst b1 (i.e., has reached a stable combination) or
is just progressing within the burst b2 (i.e., has not reached

Bursts and Output Feedback 5

a stable combination yet). Hence, it cannot be determined
from the burst whether ! has reached its next stable state,
in contradiction to our assumption that (S, u) is detectable.
Thus, (ii) must be valid, and our proof concludes.

The following example demonstrates testing for detectabil-
ity. Note that the case presented in the example is not
strictly detectable in the sense of [13], where only current
output values (rather than output bursts) of the controlled
machine are employed. Thus, the use of bursts does
enhance control capabilities.

Example 2.5: Consider an asynchronous machine! with
the input alphabet A = {a, b}, the output alphabet Y =
{0, 1}, the state set X = {x1, x2, x3, x4}, and the transition
table:

Table 1. The transition table of !.

a b Y

x1 {x2, x3} x1 0
x2 x2 x4 0
x3 x3 x4 0
x4 x4 x1 1

For the set S := {x2, x3}, we can see from the table that
the pair (S, b) is valid. Further, the pair (S, b) induces the
transitions x2 → x4 → x1 and x3 → x4 → x1, with the
output bursts β(x2, b, x1) = 010 and β(x3, b, x1) = 010.
Thus, B(S, b) = {010}, and it follows by Proposition 2.4
that (S, b) is detectable. In contrast, it can be verified that
(S, b) is not strongly detectable in the sense of [13]. Thus,
the use of bursts enhances control capabilities. !

3. Generalized Realizations

In the present section, we broaden the notion of general-
ized realization ([20, 13, 14]) to accommodate the use of
bursts. We start by introducing an equivalence relation on
a machine’s state set, under which states are considered
equivalent if the process of reaching them generates the
same burst.

Definition 3.1: Let ! be an asynchronous machine with
the stable recursion function s, let S ⊂ X be a set of states,
and let u ∈ A be an input character for which (S, u) is a
valid pair. For a burst β, the set of burst equivalent states
S(β) induced by S is the set of all states x′ ∈ s(S, u) for
which β ∈ β(x, u, x′) for some state x ∈ S. !

When a transition of ! starts from an unspecified state
within the set S and produces a burst β on its way to the
next stable state, the latter will be a member of the set S(β)

of burst equivalent states. It is not possible to determine
from input and output data at which member of the set
S(β) the machine rests after the transition.

Example 3.2: For the set S of Example 2.5, we have
S(010) = x1. Consequently, there is no uncertainty after
the transition in this case. !

We adapt now to our present setup the notion of general-
ized state ([20, 13, 14]). Below, #X denotes the cardinality
of a set X, and P(X) is the power set of X (the family of
all subsets of X).

Definition 3.3: Let ! = (A, Y , X , x0, f , h) be an asyn-
chronous machine with the stable recursion function s, let
χ be a set disjoint from X with at least 2#X elements, and
let $: P(X) → X ∪ χ be an injective function satisfying
$(x) = x for all states x ∈ X. With a burst equivalent set
of states S, associate the element ξ := $(S).

If #S > 1, then ξ is called a group state of !, while S is
called the underlying set of ξ and is denoted by S(ξ). For
an input character u ∈ A, the pair (ξ , u) is valid if (S, u) is
a valid pair.

An extended state set of ! is the union of the original
state set X with a set of group states. A generalized state set
X̃ of ! is an extended state set for which the following is
true for all valid pairs (ξ , u) ∈ X̃×A: every burst equivalent
subset of s(S(ξ), u) is either a single state or is represented
by a group state in X̃. !

With a generalized realization, there is associated a
recursion function defined as follows.

Definition 3.4: Let ! = (A, Y , X, x0, f , h) be an asyn-
chronous machine with the stable recursion function s,
and let X̃ be a generalized state set of !. For a member
ζ ∈ X̃ , denote by S(ζ) the underlying set of states, where
S(ζ) := ζ when ζ ∈ X . For a valid pair (ζ , u) ∈ X̃ ×A, let
{S1, . . . , Sm} be the family of all burst equivalent subsets of
states in s[S(ζ), u], and let ζ i ∈ X̃ be the generalized state
associated with Si, i = 1, . . . , m. Then, the generalized
stable recursion function sg is defined by

sg(ζ , u) := {ζ 1, . . . , ζm} for all valid pairs (ζ , u) ∈ X̃×A.

(3.1)

The generalized output function hg : X̃ → Y is

hg(ζ) := h[S(ζ)] for all ζ ∈ X̃. (3.2)

The sextuple !g := (A, Y , X̃, x0, sg, hg) forms a general-
ized realization of !. !

Note that, since S(ζ) in (3.2) is a burst equivalent set
of states, all states of S(ζ) produce the same output value

6 J. Peng and J. Hammer

(equal to the last burst character); as a result, h[S(ζ)] is a
single character. An important consequence is that the gen-
eralized realization !g has the same input/output behavior
as the original machine !. In other words, !g is simply
another realization of !.

The generalized state of a machine is uniquely deter-
mined by the burst of the most recent stable state transition,
since each generalized state represents a specific burst
equivalent set (see Proposition 3.8 below for a formal state-
ment of this fact). That being so, a generalized realization
serves the important purpose of creating a deterministic
relationship between output values and generalized states
of a possibly non-deterministic machine. An examination
of Definitions 3.3 and 3.4 leads to the following algorithm
for the construction of generalized realizations (see also
[13, 14]).

Algorithm 3.5: Let ! = (A, Y , X, x0, f , h) be an asyn-
chronous machine with the stable recursion function
s, and assume that ! has ρ critical race pairs
(r1, v1), (r2, v2), . . . , (rρ , vρ). Let χ be a set that is dis-
joint of the state set X and has at least 2#X elements, and
let $: P(X) → X ∪ χ be an injective function satisfy-
ing $(x) = x for all x ∈ X. The following steps build a
generalized realization !g := (A, Y , X̃, x0, sg, hg) of !.

Step 1. For every valid pair (x, u) ∈ X × A that is not
a critical race, set sg(x, u) := s(x, u). If ρ = 0,
then set ϒ := ∅ and go to Step 9.

Step 2. Define the ordered family of pairs S :=
{(r1, v1), (r2, v2), . . . , (rρ , vρ)} and the sets ϒ :=
∅ and ϒ ′ := ∅. Assign i := 1.

Step 3. Let σi be the i-th member of S, and let
{G1, . . . , Gk} be the family of burst equivalent
subsets in s(σi).

Step 4. Denote ξj := $(Gj), j = 1, 2, . . . , k, and
replace ϒ by the set ϒ ∪ {ξ1, . . . , ξk}. Assign
sg(σi) := {ξ1, . . . , ξk}, and denote S(ξj) :=
Gj, j = 1, 2, . . . , k.

Step 5. If i + 1 ≤ #S, then replace i by i + 1 and return
to Step 3.

Step 6. Define the difference set ϒ ′′ := [ϒ \ϒ ′]\X; then
replace ϒ ′ := ϒ .

Step 7. If ϒ ′′ = ∅, then go to Step 9.
Step 8. Replace S by an ordered family consisting of all

valid pairs (S(ζ), u), where ζ ∈ ϒ ′′ and u ∈ A,
and return to Step 3.

Step 9. Terminate the Algorithm. The set ϒ is the set of
group states, X̃ := X ∪ ϒ is the generalized state
set, and sg is the generalized stable recursion
function of !. The generalized output function
is given by hg(ζ) := h(S(ζ)) for all ζ ∈ X̃. !

Example 3.6: Applying Algorithm 3.5 to the machine
! of Example 2.5 leads to the addition of one group

state x5 := {x2, x3}; this yields the generalized state set
X̃ = {x1, x2, x3, x4, x5}. The resulting generalized transi-
tion function sg and output function hg are described by
the following table of transitions. !

Table 2. The generalized transitions of ! and
their outputs.

a b Y

x1 x5 x1 0
x2 x2 x4 0
x3 x3 x4 0
x4 x4 x1 1
x5 x5 x1 0

An asynchronous machine is said to have an infinite
cycle if it has a valid pair (x, u) that has no next stable
state.

Lemma 3.7: If an asynchronous machine has no infinite
cycles, neither does its generalized realization.

Proof: Let !g = (A, Y , X̃ , x0, sg, hg) be a general-
ized realization of an asynchronous machine ! =
(A, Y , X, x0, f , h). Assume, by contradiction, that ! has no
infinite cycles, while !g does have an infinite cycle. Then,
there is an input character u ∈ A and a state x1 ∈ X̃ for
which !g never reaches a stable combination. Let x1, x2 ∈
sg(x1, u), x3 ∈ sg(x2, u), . . . be an infinite sequence of gen-
eralized states generated by the pair (x1, u). Now, if all
members of the sequence x1, x2, x3, . . . are regular states
of !, then ! itself has an infinite cycle, contrary to our
assumption. Thus, at least one of the states {x1, x2, . . .}
must be a group state.

For a group state x ∈ X̃, denote by S(x) ⊂ X the under-
lying set of states associated with x. By the definition of
a generalized state, the machine ! is at a (regular) state
x′ ∈ S(x) when !g is at the generalized state x. Build
now the sequence x′

1, x′
2, . . . of regular states of !, where

x′
i := xi when xi is a regular state of ! and x′

i ∈ S(xi)

when xi is a group state. But then, the infinite sequence
x′

1, x′
2, . . . of regular states of ! forms an infinite chain

of transitions that does not lead to a stable state, contrary
to our assumption that no such chains exist in !. This
concludes the proof.

For an asynchronous machine with critical races, it may
not be possible to determine the exact state of the machine
from its output burst, since different outcomes of a crit-
ical race may result in the same burst. The main feature
of a generalized realization is that it resolves this uncer-
tainty by creating a deterministic relationship between the

Bursts and Output Feedback 7

output burst of a machine and the generalized state, as
follows.

Proposition 3.8: Let ! be an asynchronous machine
without infinite cycles. The generalized state of ! is
uniquely determined by the history of input values and
output bursts of !.

Proof: The proof is by induction. Consider a machine
! = (A, Y , X, x0, f , h) with a generalized state set X̃ built
in accordance with Algorithm 3.5. Initially, ! and its gen-
eralized realization !g = (A, Y , X̃, x0, sg, hg) are both in
a stable combination at the initial state x0. Next, forming
the induction assumption, consider the case where ! is
activated by an input string u0u1 . . . up and, as a result,
produces the string of bursts β0, β1, . . . , βp. Assume that,
from this information, it can be determined that ! is at the
generalized state x ∈ X̃ .

Now, let u be an input character that forms a valid pair
with the generalized state x, and letβ be the burst generated
by ! as it moves to the next generalized stable state x′

of the pair (x, u) (note that x′ exists by Lemma 3.7). By
induction, our proof will conclude upon showing that x′ is
uniquely determined by x, u, and β. Now, the next stable
generalized state of ! was reached through the burst β, so
it must be a member of a burst equivalent class S ⊂ sg(x, u)

associated with the burst β. By Definition 3.3, the class
S is represented by exactly one generalized state, which,
in this case, must then be the generalized state x′. Thus,
x′ is uniquely determined by x, u and β, and our proof
concludes.

4. Observers

Following the methodology employed by Geng and Ham-
mer [4], the controller C of Fig. 1 is decomposed into a
combination of two asynchronous machines: an observer
ϑ and a control unit F, as described by Fig. 2.

Here, ! is the asynchronous machine being controlled.
The observer ϑ is an asynchronous machine that uses the

Fig. 2. Controller Structure.

input value and the burst of ! to determine the general-
ized state of !. This generalized state is then used by the
controller F—another asynchronous machine—to gener-
ate an input string that drives ! to a desired outcome. The
controller C of Fig. 1 is then the combination (F, ϑ).

The role of the observer ϑ here is similar to its role
in [13, 14]: it determines whether ! has reached a stable
state, and it indicates the latest generalized stable state
! has reached. The observer ϑ and the control unit F
are designed to rest in a stable combination while ! is in
transition to guarantee fundamental mode operation of the
configuration of Fig. 2.

The structure of the observer ϑ is determined by a
generalized realization !g = (A, Y , X̃, x0, sg, hg) of !,
as the observer’s role is to reproduce each stable transi-
tions of !g immediately after it has occurred. Specifi-
cally, the observer is an input/state machine ϑ = (A ×
Y∗, X̃ , X̃ , x0, σ , I) with two inputs: the input character
u ∈ A of ! and the output burst β ∈ Y∗ of !. The output
set of ϑ and the state set of ϑ are identical to the gener-
alized state set X̃ of the observed machine !. The initial
state x0 of ϑ is identical to the initial state of !.

The recursion function σ : X̃ × A × Y∗ → X̃ of ϑ

is constructed as follows. Assume that at step i − 1 the
machine ! is at the generalized stable combination (x, u′),
when the input character changes to u, where (x, u) is a
detectable pair. The change of the input character may give
rise to a chain of transitions of !. Considering that the
generalized realization has no infinite cycles (see Lemma
3.7), this chain of transitions consists of a finite number of
steps, say steps i, i+1, i+2, . . . , i+q, and ends at the next
stable state x′. Letting yi, yi+1, . . . , yi+q be the string of
output values generated during this chain of transitions, we
denote by β := β(yi, . . . , yi+q) the corresponding burst.
As the machine ! includes critical races, β is, in general,
only one of the bursts that may result from this change of
the input character; let B(x, u) be the set of all such bursts,
and let β(x, u, x′) be the subset of B(x, u) that consists of
all bursts created by transitions ending at the state x′.

Now, for a step k ≥ i along the resulting chain of tran-
sitions, let βk be the part of the burst β from step i to step
k. As the pair (x, u) was detectable, it is possible to deter-
mine when the burst terminates; at that point k = i + q
and βi+q ∈ β(x, u, x′). These considerations lead us to
the following definition of the recursion function σ of the
observer ϑ :

σ (x, u, βk) :=
{

ζ ∈ sg(x, u) if βk ∈ β(x, u, ζ),
x otherwise.

(4.1)

For a detectable transition, Proposition 3.8 implies that
the value of σ (x, u, βk) is uniquely determined by (4.1);
non-detectable transitions must be avoided, since they
do not permit fundamental mode operation of the closed

8 J. Peng and J. Hammer

Table 3. The observer’s transition function.

a, 0 a, 1 b, 0 b, 1 a, 01 a, 10 b, 01 b, 10 a, 010 a, 101 b, 010 b, 101

x1 − − x1 − − − − − − − − −
x2 x2 − − − − − − − − − x1 −
x3 x3 − − − − − − − − − x1 −
x4 − x4 − − − − − x1 − − − −
x5 x5 − − − − − − − − − − −

loop configuration of Fig. 1. The observer ϑ is then an
input/state asynchronous machine with the recursion

ϑ : zk+1 = σ (zk , uk , βk), k = 0, 1, 2, . . . , (4.2)

where zk is the current state of ϑ as well as the current
output of ϑ .

In summary, the current state of the observer ϑ is
equal to the last generalized stable state that the observed
machine ! has reached through a detectable transition;
and ϑ switches to this state immediately following the
step at which ! reaches a stable combination at that state.
Furthermore, this construction guarantees that ϑ remains
in a stable combination while ! is in transition, and that
ϑ transits only while ! is at a stable combination. In
this way, ϑ helps create an environment within which !

can be controlled in fundamental mode operation. The
following example demonstrates the construction of an
observer.

Example 4.1: We construct an observer for the general-
ized realization !g derived in Example 3.6. Recall that
the output alphabet of !g is comprised of the two char-
acters 0 and 1. An examination of the transition table of
Example 3.6 shows that the longest burst generated by
!g during a one step stable transition consists of three
characters and that the transition table representing the
recursion function σ of the observer is as follows. (Only
stable and detectable transitions are listed; a hyphen in an
entry indicates that the corresponding combination is not
used.) !

5. The Control Unit

The construction of the control unit F of Fig. 2 is simi-
lar to its construction in [4], except for two points: (i) the
construction is based on the generalized realization of !

(Section 3) rather than on the original realization of !;
and (ii) the notion of detectability of Definition 2.3 is used
instead of the notion used in [4]. In this section, we out-
line the process that underlies the construction of F. We
start in subsection 5.1 by generalizing the notion of sta-
ble reachability matrix to characterize all stable transitions

of a generalized realization. Then, in subsection 5.2, we
revisit the notion of feedback paths to help characterize
the existence of feedback controllers. The family of all
transitions that can be implemented by output feedback
control is characterized in subsection 5.4 by the gener-
alized skeleton matrix (introduced there). Finally, output
feedback controllers that utilize bursts to achieve model
matching are presented in subsection 5.5. Q2

5.1. The Generalized Reachability Matrix

Definition 5.1: Let ! be an asynchronous machine with
the generalized realization !g = (A, Y , X̃ , x0, sg, hg) and
denote q := #X̃ . For a pair of generalized states xi, xj ∈ X̃,
define the set of input characters

α(xi, xj) := {a ∈ A : (xi, a) is a detectable pair and

xj ∈ sg(xi, a)}. (5.1)

Then, the generalized one-step reachability matrix Rg(!)

is a q × q matrix whose i, j entry is given by

Rgij (!) :=
{

α(xi, xj) if α(xi, xj))= ∅,
N if α(xi, xj) = ∅,

(5.2)

where i, j = 1, 2, . . . , q, and N is a character not in A. !

Example 5.2: We construct the generalized one-step
reachability matrix of the machine ! of Example 2.5,
using the generalized realization of Example 3.6. Note
that the generalized one-step reachability matrix includes
only one-step stable transitions that are detectable.

Rg(!) =

{b} N N N N
{b} {a} N N N
{b} N {a} N N
{b} N N {a} N
N N N N {a}

.!

Next, we review a few operations on strings of char-
acters ([12]) that are needed in order to derive features

3

3

4

in Table 3

Bursts and Output Feedback 9

of the machine ! from its generalized one-step reacha-
bility matrix. Consider two elements w1, w2 ∈ A+ ∪ N ,
where N is a character not in A. The operation ∪/ of unison
is defined by

w1 ∪/ w2 :=

w1 ∪ w2 if w1, w2 ∈ A+;
w1 if w1 ∈ A+ and w2 = N ;
w2 if w1 = N and w2 ∈ A+;
N if w1 = w2 = N .

For two subsets σ1, σ2 ⊂ A+ ∪N , the unison is defined by

σ1 ∪/ σ2 := {w1 ∪/ w2 : w1 ∈ σ1 and w2 ∈ σ2}.

The concatenation of two members w1, w2 ∈ A+ ∪ N is

conc(w1, w2) :=
{

w2w1 if w1, w2 ∈ A+;
N if w1 = N or w2 = N .

For two subsets W , V ⊂ A+ ∪ N , the concatenation is

conc(W , V) := ∪/ w∈W ,v∈V conc(w, v).

The product Z := CD of two n × n matrices C, D whose
entries are subsets of A+ ∪ N is an n × n matrix whose
(i, j) entry is

Zij := ∪/ k=1,2,...,nconc(Cik , Dkj), i, j = 1, . . . , n.

With this product, we can define the powers

Rt
g(!) := Rt−1

g (!)Rg(!), t = 2, 3, . . .

Entry i, j of the power Rt
g(!) consists of all strings of t

characters that take ! from a stable combination with the
generalized state xi to a stable combination with the gen-
eralized state xj through a string of stable and detectable
transitions; here, xj could be just one possible outcome of
a critical race.

We combine the powers of Rg(!) into the matrix

R(t)
g (!) := ∪/ r=1,...,t(Rg(!))r , t = 2, 3, . . . (5.3)

Then, entry i, j of the matrix R(t)
g (!) consists of all strings

of t or fewer characters that take ! from a stable combina-
tion with the generalized state xi to a stable combination
with the generalized state xj through a string of stable and
detectable transitions; here as well, xj could be just one
possible outcome of a critical race.

Definition 5.3: The generalized stable reachability matrix
of ! is ,g(!) := Rg

(q−1)(!), where q is the number of
generalized states of !. !

The following statement, whose proof is similar to the
proof of Murphy, Geng and Hammer [12, Lemma 3.2],

demonstrates the significance of the generalized stable
reachability matrix: it characterizes all pairs of states that
are connected through strings of stable and detectable
transitions.

Lemma 5.4: Let ! be an asynchronous machine with the
generalized state set X̃ = {x1, . . . , xq}, and let ,g(!) be
the generalized stable reachability matrix of !. Then the
following two statements are equivalent for all pairs of
states xi, xj ∈ X̃.

(i) xj is stably reachable from xi through a string of
stable and detectable transitions, possibly as one outcome
of a critical race.

(ii) The (i, j) entry of ,g(!) is not N. !

Example 5.5: The generalized stable reachability matrix
of the machine ! of Example 2.5 can be calculated by
combining powers 1, 2, 3, and 4 of the one-step reachabil-
ity matrix of Example 5.2. It is given by

,g(!) =

{b} N N N N
{b, ab} {a} N N N
{b, ab} N {a} N N
{b, ab} N N {a} N

N N N N {a}

.!

5.2. Feedback Paths

A deterministic transition of an asynchronous machine
! is a transition or a string of transitions with a unique
outcome. The following notion helps characterize the set
of all deterministic transitions possible for the closed loop
machine of Fig. 1 (compare to [18–20]). Below, -x : X̃ ×
A → X̃ : -x(x, u) := x denotes the standard projection
onto the generalized state set.

Definition 5.6: Let ! be an asynchronous machine with
the generalized state set X̃ and the generalized stable recur-
sion function sg, and let x′, x′′ be two generalized states
of !. A detectable feedback path from x′ to x′′ is a list
S0, S1, . . . , Sp ⊂ X̃ × A of sets of detectable pairs with the
following features:

(i) S0 = {(x′, u0)} for some u0 ∈ A (i.e., S0 consists of
a single pair);

(ii) sg[Si] ⊂ -x[Si+1], i = 0, . . . , p − 1; and
(iii) Sp = {(x′′, up)}, where (x′′, up) ∈ X̃ × A is a stable

combination. !

The significance of a detectable feedback path origi-
nates from the following statement.

Theorem 5.7: Let ! be an asynchronous machine with
the generalized realization !g, and let x′ and x′′ be

10 J. Peng and J. Hammer

generalized states of !. Then, the following are equiv-
alent.

(i) There is an output feedback controller C for which
the closed loop machine !gc has a deterministic
stable transition from x′ to x′′ in fundamental mode
operation.

(ii) There is a detectable feedback path from x′ to x′′.

Regarding the proof of Theorem 5.7, the construction
described below builds a feedback controller that satisfies
condition (i) of the theorem when condition (ii) is valid.
This proves one direction of the theorem. The converse
direction can be proved by reversing the argument line of
the construction (see also the proof of an analogous result
in [20]).

Construction 5.8: Let ! be an asynchronous machine
with the generalized realization !g = (A, Y , X̃, x0, sg, hg).
Let x′ and x′′ be two generalized states of !, and let
{S0, S1, . . . , Sp} be a detectable feedback path from x′ to
x′′. Assume that ! is at a stable combination with the state
x′ reached through a detectable transition. The following
process constructs an output feedback controller that takes
! to a stable combination with x′′ in fundamental mode
operation.

Let W ⊂ A be the prescribed set of command characters
that prompt the controller to initiate the transition: when a
character of W appears at the command input v of Fig. 2,
the controller starts to generate a string that takes ! from
a stable combination with x′ to a stable combination with
x′′. For future reference, it is convenient to denote this
controller by the symbol C(x′, x′′, W).

The controller C(x′, x′′, W) is a combination of an
observer ϑ and a control unit F(x′, x′′), as described in
Fig. 2. The observer ϑ is the input/state system given by
(4.2); its output character z is equal to the latest stable
generalized state reached by ! through a detectable tran-
sition. As the machine ! is at the generalized state x′

reached through a detectable transition, the output of ϑ

at the start of the transition is z = x′.
The control unit is an asynchronous machine

F(x′, x′′) = (A × X̃ , A, ., ξ0, φ, η) with two inputs: the
external command input v ∈ A of Fig. 2 and the output
z ∈ X̃ of the observer ϑ . Considering that the observer is
given by (4.2), it only remains to construct the control unit
F(x′, x′′).

The control unit F(x′, x′′) stays in its initial state ξ0
until the observer ϑ indicates that ! has reached a stable
combination with the generalized state x′. At that point,
F(x′, x′′) switches to the state ξ1, ready for a command
input character v ∈ W. If such a command character
is received, F(x′, x′′) starts to create an input string that
takes ! to a stable combination with the generalized state
x′′. The transition function φ and the output function η

of F(x′, x′′) are built as follows. Let U(x′) be the set of
input characters that form stable combinations with the
generalized state x′; then, assign

φ(ξ0, (z, t)) := ξ0 for all (z, t) ∈ X̃ × A \ {x′} × U(x′),

φ(ξ0, (x′, u)) := ξ1 for all u ∈ U(x′),

η(ξ0, (z, u)) := u for all (z, u) ∈ X̃ × A.

Note that the control unit F(x′, x′′) is transparent in the
state ξ0—it applies to ! an input character equal to the
command input character u it receives.

While in the state ξ1, the control unit F(x′, x′′) is
transparent for all external input characters, except for
characters v ∈ W, as these initiate the required transition.
Thus, we set

η(ξ1, (x′, u)) := u for all u /∈ W .

For characters v ∈ W, the control unit applies to ! one
of the characters of the set U(x′), say u′ ∈ U(x′), so that
! continues for now to stay in a stable combination with
the state x′ (to assure fundamental mode operation):

η(ξ1, (x′, v)) := u′ for all v ∈ W .

Now, the control unit F(x′, x′′) initiates an input string
that ultimately takes ! to a stable combination with
the desired state x′′ through a string of stable and
detectable transitions. Recalling the detectable feedback
path {S0, S1, . . . , Sp}, let S0 := {(x′, u1)}, where u1 ∈ A.
When the control unit F(x′, x′′) receives an external input
character v ∈ W while in the state ξ1, it moves to the state
ξ1(x′, W); upon reaching this state, it applies the input
character u1 to !:

φ(ξ1, (x′, u)) := ξ1 for all u /∈ W ,

φ(ξ1, (x′, u)) := ξ1(x′, W) for all u ∈ W ,

η(ξ1(x′, W)) := u1.

By the definition of a detectable feedback path, the input
character u1 moves ! to a stable combination with a
generalized state x1 ∈ sg(x′, u1) through a detectable tran-
sition. Following this detectable transition, the observer ϑ

changes its output to x1 right after ! has reached x1. Upon
receiving the character x1 from the observer, the control
unit F(x′, x′′) moves to the state ξ2(x′, W):

φ(ξ1(x′, W), (z, u)) := ξ1(x′, W)

for all (z, u) ∈ X̃ × A \ {sg(x′, u1)} × W ,

φ(ξ1(x′, W), (x1, v)) := ξ2(x′, W)

for all x1 ∈ sg(x′, u1) and v ∈ W .

Bursts and Output Feedback 11

Next, select a pair (x1, u2) ∈ S1. When F(x′, x′′) reaches
the state ξ2(x′, W), we set the output function to apply the
input character u2 to !:

η(ξ2(x′, W)) := u2.

This process continues in a step-by-step fashion. At the
step r, where 1 ≤ r ≤ p − 1, the control unit F(x′, x′′)
is at the state ξ r(x′, W). As we are following a detectable
feedback path, all transitions are detectable; the observer
ϑ indicates at step r that ! is in a stable combination
with the generalized state xr−1, and F(x′, x′′) applies the
input character ur to !, where (xr−1, ur) ∈ Sr−1. The
input character ur causes ! to move to a generalized state
xr ∈ sg(xr−1, ur) through a detectable transition. When !

arrives at xr , the output of ϑ switches to xr, and we set the
control unit F(x′, x′′) to move to the state ξ r+1(x′, W):

φ(ξ r(x′, W), (z, u)) := ξ r(x′, W)

for all (z, u) ∈ X̃ × A \ {sg(xr−1, ur)} × W ,

φ(ξ r(x′, W), (xr , v)) := ξ r+1(x′, W)

for all xr ∈ sg(xr−1, ur) and v ∈ W .

Next, select a pair (xr , ur+1) ∈ Sr . Upon reaching the
state ξ r+1(x′, W), the control unit F(x′, x′′) applies to !

the input character ur+1:

η(ξ r+1(x′, W)) := ur+1.

This makes ! move to a generalized state xr+1 ∈
sg(xr , ur+1) through a detectable transition. Being the
last member of a detectable feedback path, Sp con-
sists of a single stable combination with the gener-
alized state x′′ so that, at step p, ! arrives at a
stable combination with x′′ through a detectable tran-
sition. This concludes the construction of the control
unit F(x′, x′′). The state set of F(x′, x′′) is .(x′, W) :=
{ξ0, ξ1, ξ1(x′, W), ξ2(x′, W), . . . , ξp(x′, W)}. The resulting
controller C(x′, x′′, W) = (F(x′, x′′), ϑ) satisfies condi-
tion (i) of Theorem 5.7. !

5.3. The Generalized Skeleton Matrix

The set of all pairs of generalized states that are connected
by a detectable feedback path can be characterized by a
matrix of zeros and ones called the generalized skeleton
matrix (see [18, 19, 20, 13, 14]). This matrix is constructed
by the following algorithm using the meet operation—a
binary operation that may involve a string a ∈ A+, the
characters 0 and 1, and a character ω not included in the
alphabet A; it is defined as follows.

0 ∧ 0 := 0; 0 ∧ 1 := 0; 1 ∧ 0 := 0; 1 ∧ 1 := 1;
0 ∧ a := 0; a ∧ 0 := 0; 1 ∧ a := ω; a ∧ 1 := ω.

The meet of two vectors with r ≥ 1 components is the
vector of the meets of the corresponding components.

Remark 5.9: In the algorithm listed below, the character ω

is needed in the meet operation only when the controlled
machine ! has infinite cycles. As the machines consid-
ered here have no infinite cycles, the character ω can be
ignored. !

The length of a string a ∈ A∗ is the number of characters
of a.

Algorithm 5.10: Let ! be an asynchronous machine with
the generalized state set X̃ = {x1, . . . , xq}, and let ,g(!)

be the generalized stable reachability matrix of !.

Step 1. Replace all entries of N in the matrix ,g(!) by
the number 0; denote the resulting matrix by K1.

Step 2. Perform (a) below for each i, j = 1, . . . , q; then
continue to (b):

(a) If K1
ij includes a string of A+ that does not

appear in any other entry of the same row i,
then perform the following operations:
Delete any string included in K1

ij from all

entries of row i of the matrix K1. Replace all
resulting empty entries, if any, by the number
0. Replace entry K1

ij by the number 1.
(b) Denote the resulting matrix by K ′(1). Delete

from the matrix K ′(1) all strings of A+ whose
length is bigger than 1. Replace all empty
entries, if any, by the number 0. Denote the
resulting matrix by K(1). Set k := 1.

Step 3. If k)= q, then continue to Step 4. Otherwise,
perform the following operations: If every entry
of the matrix K(q) is either 0 or 1, then set
Kg(!) := K(q) and terminate the Algorithm; if
K(q) includes characters other than 0 or 1, then
set k := 1 and continue to Step 4.

Step 4. If all entries of row k of the matrix K(k) are 1 or
0, then set K(k +1) := K(k), and repeat from Step
3 with the value k + 1 for k. Otherwise, proceed to
Step 5.

Step 5 Perform the following for every character u ∈ A
that appears in row k of the matrix K(k):

(a) Denote by j1, j2, . . . , jq the columns of row k
of K(k) that include u. Let J(u) be the meet of
rows j1, j2, . . . , jq of the matrix K(k).

(b) If J(u) has no entries other than 0 or 1, then
delete u from all entries of row k of the matrix
K(k); set all empty entries, if any, to the value
0.

(c) If J(u) has no entries of 1, then return to Step
4. Otherwise, continue to (d).

12 J. Peng and J. Hammer

(d) If J(u) has entries of 1, then let i1, . . . , ir be
the entries of J(u) having the value 1. Let S(k)

be the set of rows of K(k) that consists of row
k and of every row that has the number 1 in
column k of K(k). In the matrix K(k), perform
the following operations on every row of S(k) :

(i) Delete from the row all occurrences of
input characters that appear in columns
i1, . . . , ir of the row.

(ii) Replace columns i1, . . . , ir of the row by
the number 1.

(iii) If any entries of K(k) remain empty, then
replace them by the number 0. Return to
Step 4. !

The matrix Kg(!) obtained in Step 3 of Algorithm 5.10
is the generalized skeleton matrix of the machine !. Its
significance is described in the following statement, whose
proof parallels the proof of Venkatraman and Hammer
[20, Proposition 7].

Proposition 5.11: Let ! be an asynchronous machine
with the generalized state set X̃ = {x1, . . . , xq} and the
generalized skeleton matrix Kg(!). Then, the following
two statements are equivalent for any i, j ∈ {1, . . . , q}.

(a) There is a detectable feedback path from xi to xj.
(b) The (i, j) entry of Kg(!) is 1.

Example 5.12: Applying Algorithm 5.10 to the stable
reachability matrix of Example 5.5, we obtain the gen-
eralized skeleton matrix of the machine ! of Example
2.5:

Kg(!) =

1 0 0 0 0
1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
0 0 0 0 1

.!

5.4. Model Matching

The solution of the model matching problem for asyn-
chronous machines depends on the notion of output
equivalence lists introduced in Geng and Hammer [2004
and 2005], which we review next.

Definition 5.13: Let 2 = {21, . . . , 2q} and W =
{W1, . . . , Wq} be two lists of subsets of a set X̃. The length
of the list 2 is the number q of its members. The list W is a
subordinate list of the list 2 (written W ≺ 2) if W has the
same length as 2 and if Wi ⊂ 2i for all i = 1, . . . , q. A
list is deficient if it includes the empty set as a member. !

Given two sets S1 and S2 and a function g : S1 →
S2, denote by gI the inverse set function of g, i.e., for
an element s ∈ S2, the set gI(s) consists of all elements
α ∈ S1 satisfying g(α) = s.

Definition 5.14: Let ! be an asynchronous machine with
the generalized realization !g = (A, Y , X̃ , x0, sg, hg), and
let !′ = (A, Y , X ′, ζ0, s′, h′) be a stable-state asynchronous
machine with the state set X ′ = {ζ 1, . . . , ζ q}. The general-
ized output equivalence list of ! with respect to !′ is given
by Eg(!, !′) := {E1, . . . , Eq}, where Ei := hI

gh′(ζ i), i =
1, . . . , q. !

Note that member i of Eg(!, !′) consists of all gener-
alized states of ! that produce the same output value as
state i of !′.

Example 5.15: Consider the machine ! of Example 2.5
with the generalized realization of Example 3.6, and the
model !′ with the state set X ′ = {ζ 1, ζ 2}, the input alpha-
bet A = {a, b}, the output alphabet Y = {0, 1}, and the
transition function described by the following table:

Table 4. The model’s transition function.

X ′ a b Y

ζ 1 ζ 1 ζ 2 1
ζ 2 ζ 1 ζ 2 0

By observation, the generalized output equivalence list
of ! with respect to !′ is then Eg(!, !′) = {E1, E2},
where E1 = {x4} and E2 = {x1, x2, x3, x5}. !

The following adapts to our setting a notion introduced
by Geng and Hammer [3, 4].

Definition 5.16: Let ! be an asynchronous machine with
the generalized state set X̃ , and let 21 and 22 be two
nonempty subsets of X̃. The generalized reachability indi-
cator rg(!, 21, 22) is 1 if there is a detectable feedback
path from every element of 21 to an element of 22;
otherwise, rg(!, 21, 22) := 0.

Let 2 = {21, . . . , 2q} be a list of q ≥ 1 non-empty sub-
sets of X̃ . The generalized fused skeleton matrix 3g(!, 2)

is a q × q matrix whose (i, j) entry is 3gij (!, 2) :=
rg(!, 2i, 2j), i, j = 1, 2, . . . , q. !

The significance of fused skeleton matrices originates
from the following statement, whose proof parallels the
proof of Geng and Hammer [4, Corollary 53]. (Skele-
ton matrices of deterministic asynchronous machines are
discussed in [12].)

Bursts and Output Feedback 13

Theorem 5.17: Let ! be an asynchronous machine with
the initial condition x0. Let !′ be a stably minimal asyn-
chronous machine with the skeleton matrix K(!′), the
state set X ′ = {ζ 1, . . . , ζ q}, and the initial condition
ζ0 = ζ d, where d ∈ {1, 2, . . . , q}. Then the following
two statements are equivalent.

(i) There is a controller C for which !c = !′, where !c
operates in fundamental mode and is well posed.

(ii) There is a non-deficient generalized subordinate list
2 = {21, . . . , 2q} of the generalized output equiv-
alence list Eg(!, !′) such that 3g(!, 2) ≥ K(!′)
and x0 ∈ 2d.

Moreover, when (ii) is valid, the controller C can be imple-
mented as a combination of an observer ϑ and a control
unit F as depicted in Fig. 2, with ϑ being given by (4.2).

As we can see from Theorem 5.17, model matching for
an asynchronous machine depends on the derivation of an
appropriate subordinate list of the output equivalence list.
This can be accomplished by using the following variant
of [4, Algorithm 54].

Algorithm 5.18: Let ! and !′ be asynchronous
machines, where !′ is a stably minimal machine serving
as a model. Let Eg(!, !′) = {E1, . . . , Eq} be the cor-
responding generalized output equivalence list, and let
K(!′) be the skeleton matrix of !′. The following steps
yield a decreasing chain 2(0) . 2(1) 2(r) of
generalized subordinate lists of Eg(!, !′). The members
of the list 2(i) are denoted by 21(i), . . . , 2q(i); they are
subsets of the generalized state set X̃ of !.

Start. Set 2(0) := E(!g, !′).
Recursion. Assume that a subordinate list 2(k) =

{21(k), . . . , 2q(k)} of Eg(!, !′) has been
constructed for an integer k ≥ 0. For each
pair of integers i, j ∈ {1, . . . , q}, let Sij(k) be
the set of all generalized states x ∈ 2i(k)

for which the (i, j) element of the generalized
fused skeleton matrix 3g(!, 2(k)) is 0; i.e.,
Sij(k) consists of all x ∈ 2i(k) from which
there is no detectable feedback path ending at
a generalized state belonging to 2j(k). Then,
denote

Tij(k) :=
{

Sij(k) if Kij(!
′) = 1;

∅ if Kij(!
′) = 0.

Now, using \ to denote set difference, define
the subsets

V i(k) :=
⋃

j=1,...,q

Tij(k), i = 1, . . . , q,

2i(k + 1) := 2i(k) \ Vi(k), i = 1, . . . , q.

Then, the next subordinate list is given by

2(k + 1) := {21(k + 1), . . . , 2q(k + 1)}.

Test. The algorithm terminates if the list 2(k + 1)

is deficient or if 2(k +1) = 2(k); otherwise,
repeat the Recursion, replacing k by k +1. !

In view of Theorem 5.17, a controller that solves the
model matching problem exists if and only if Algorithm
5.18 yields a non-deficient subordinate list.

Example 5.19: Recalling the machines ! and !′ of
Example 5.12, we apply Algorithm 5.18 to the output
equivalence list of Example 5.15 (using the generalized
skeleton matrix of Example 5.12). The Algorithm yields
the subordinate list {{∅}, {x4}}, which is deficient. Hence,
there is no controller that makes !c stably equivalent to
!′ in fundamental mode operation. !

Once a non-deficient subordinate list of the output
equivalence list is available, a controller that achieves
model matching in fundamental mode operation can be
built by the following construction, whose proof parallels
the proof of Geng and Hammer [4, Theorem 51].

Construction 5.20: Let ! be an asynchronous machine
with the generalized realization !g = (A, Y , X̃ , x0, sg, hg),
and let !′ = (A, Y , X ′, ζ0, s′, h′) be a stably minimal
asynchronous machine serving as a model. Assume that
condition (ii) of Theorem 5.17 is valid, namely, there is
a non-deficient subordinate list 2 = {21, . . . , 2q} of the
generalized output equivalence list Eg(!, !′) for which
3g(!, 2) ≥ K(!′) and x0 ∈ 2d. Then, a controller C
satisfying !c = !′ can be assembled as a combination
of the observer ϑ given by (4.2) and the control unit F
constructed below.

To describe the construction of F, assume that the model
!′ is at a stable combination (ζ i, w′) and that ! is at a
stable combination with a generalized state x ∈ 2i it has
reached through a detectable transition. As x was reached
through a detectable transition, the output of the observer
ϑ is x. Presently, the external command character switches
from w′ to w, causing !′ to move to the stable state ζ j;
this implies that Kij(!

′) = 1.
Considering that 3g(!, 2) ≥ K(!′), it follows that

3gij (!, 2) = 1; hence, there is a detectable feedback
path that takes ! from the state x ∈ 2i to a stable
combination with a state xr ∈ 2j . By Theorem 5.7, it
follows that there is a controller C(x, xr , w) that takes !

through a deterministic transition from x to xr in funda-
mental mode operation. The construction of C(x, xr , w)

follows the steps described in Construction 5.8, where
our current states x and xr correspond to the states x′

and x′′ of Construction 5.8, respectively. This results in

14 J. Peng and J. Hammer

a state-feedback control unit F(x, xr) with the state set
.(x, ζ i, w) := {ξ0, ξ1(x, ζ i, w), . . . , ξ r(x, ζ i, w)}, which
provides the state feedback necessary to take the machine
! through a deterministic transition from x to xr in
fundamental mode.

To implement all transitions necessary for the model
matching problem, we use the operation of controller join
([20]). The join C := C(x, xr , w) ∨ C(x′, x′

r , w′) of two
controllers C(x, xr , w) and C(x′, x′

r , w′) is defined as fol-
lows: (i) C is equal to C(x, xr , w) when ! is at the state
x and the external command character switches to w;
this takes ! to a stable combination with xr. (ii) C is
equal to C(x′, x′

r , w′) when ! is at the state x′ and the
external command character switches to w′; this takes
! to a stable combination with x′

r . (iii) C is transpar-
ent otherwise. Then, the controller C can be expressed by
the join

C :=
∨

x∈2i

w∈A
i=1,2,...q

C(x, xr , w).

In this expression, the target state xr ∈ X̃ is determined by
the pair (x, w) in the following way: recalling that x ∈ 2i,
let ζ j = s′(ζ i, w) be the next stable state of the model !′

induced by the pair (ζ i, w); then, xr is any stably reachable
member of 2j .

Note that all controllers C(x, xr , w) share the same
observer ϑ; letting F be the state-feedback control unit
of the controller C and using the notation of Construction
5.8, it follows that the state set of F is given by

. :=
⋃

x∈2i

w∈A
i=1,2,...q

.(x, w).

The state set . can often be reduced by using standard
reduction techniques for asynchronous machines (e.g.,
[10]). !

Examples demonstrating a close analog of Construction
5.20 can be found in [4] and in [13].

6. Conclusion

We presented a methodology for the design of output
feedback controllers that achieve deterministic model
matching for asynchronous sequential machines with
critical races. These controllers utilize output bursts to
broaden the class of non-deterministic machines for which
deterministic model matching can be achieved.

The controller design process depends in a critical
way on the derivation of a generalized realization of the

controlled machine. Once such a realization is obtained,
techniques for the control of deterministic machines can
be deployed to design controllers for non-deterministic
machines.

References

1. Barrett G, Lafortune S. “Bisimulation, the supervisory con-
trol problem, and strong model matching for finite state
machines,” Discrete Event Dynamic Systems: Theory and
Application, 1998; 8(4); 377–429.

2. Dibenedetto D, Saldanha A, Sangiovanni-Vincentelli A.
“Model matching for finite state machines,” Proceedings of
the IEEE Conference on Decision and Control, December
1994, 3, 3117–3124.

3. Geng XJ, Hammer J. “Asynchronous sequential machines:
input/output control,” Proceedings of the 12th Mediter-
ranean Conference on Control and Automation, Kusadasi,
Turkey, June 2004.

4. Geng XJ, Hammer J. “Input/output control of asynchronous
sequential machines,” IEEE Trans Automat Control, 2005;
50(12): 1956–1970.

5. Hammer J. “On some control problems in molecular biol-
ogy,” Proceedings of the IEEE conference on Decision and
Control, December 1994, 4098–4103.

6. Hammer J. “On the modeling and control of biological signal
chains.” Proceedings of the IEEE conference on Decision and
Control, December 1995, 3747–3752.

7. Hammer J. “On the corrective control of sequen-
tial machines,” International J Control, 1996a; 65(2):
249–276.

8. Hammer J. “On the control of incompletely described
sequential machines,” International J Control, 1996b; 63(6):
1005–1028.

9. Hammer J. “On the control of sequential machines with
disturbances,” International J Control, 1997; 67(3):
307–331.

10. Kohavi Z. “Switching and Finite Automata Theory,”
McGraw-Hill Book Company, New York, 1970.

11. Murphy TE, Geng XJ, Hammer J. “Controlling races in
asynchronous sequential machines,” Proceeding of the IFAC
World Congress, Barcelona, July 2002.

12. Murphy TE, Geng XJ, Hammer J. “On the control of
asynchronous machines with races,” IEEE Trans Automat
Control, 2003; 48(6): 1073–1081.

13. Peng J, Hammer J. “Input/Output Control of Asynchronous
Sequential Machines with Races,” International J Control,
2009a; 83(1): 125–144.

14. Peng J, Hammer J. “Generalized Realizations and Output
Feedback Control of Asynchronous Sequential Machines
with Races,” Proceedings of the European Control Confer-
ence, Budapest, Hungary, August 2009.

15. Ramadge PJG, Wonham WM. “Supervisory control of a class
of discrete event processes,” SIAM J Control Optimization,
1987; 25(1): 206–230.

16. Thistle JG, Wonham WM. “Control of infinite behavior of
finite automata,” SIAM J Control Optimization, 1994; 32(4):
1075–1097.

17. Unger SH. “Hazards, critical races, and metastability,” IEEE
Trans Computers, 1995; 44(6): 754–768.

18. Venkatraman N, Hammer J. “Stable realizations of
asynchronous sequential machines with infinite cycles,”

Bursts and Output Feedback 15

Proceedings of the 2006 Asian Control Conference, 2006a,
45–51, Bali, Indonesia.

19. Venkatraman N, Hammer J. “Controllers for asynchronous
machines with infinite cycles,” Proceedings of the 17th Inter-
national Symposium on Mathematical Theory of Networks
and Systems, 2006b, 1002–1007, Kyoto, Japan.

20. Venkatraman N, Hammer J. “On the control of asynchronous
sequential machines with infinite cycles,” International J
Control, 2006c; 79(7): 764–785.

21. Yang JM, Hammer J. “State Feedback Control of Asyn-
chronous Sequential Machines with Adversarial Inputs,”
International J Control, 2008; 81(12): 1910–1929.

