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Abstract

Quite often, solutions of optimal control problems yield intricate in-
put functions that are di�cult to calculate and implement. Bang-bang
functions are functions whose components assume only extremal values,
switching from one extremal value to the other as necessary. Being entirely
determined by their switching times, bang-bang functions are relatively
easy to calculate and implement. In the present note, we consider the use
of bang-bang functions to approximate solutions of a rather general class
of optimization problems. Approximation here is in the sense of finding
a simple input function that yields performance close to optimal perfor-
mance, and not necessarily in the sense of finding a simple input function
that approximates the optimal input function.

Our focus is on a rather general min-max optimization problem for
systems that are subject to parameter uncertainties and disturbance sig-
nals. Specifically, consider a system ⌃ described by a di↵erential equation
of the form

ẋ(t) = f(x(t), v(t), u(t)), (1)

where f is a continuous function, x(t) 2 R

n is the state of the system,
v(t) 2 R

p is a disturbance signal, and u(t) 2 R

m is the control input
signal of ⌃. To avoid issues related to stability, we restrict our attention
to optimization over a finite time interval [0, t

f

].

As is the case for most practical systems, the input signals of ⌃ are of
bounded amplitude, with the amplitude bound being determined by the
physical characteristics of ⌃. In formal terms, there is a box S ⇢ R

m

such that all permissible input functions of ⌃ must satisfy u(t) 2 S for
all t 2 [0, t

f

]. In addition, we require all input functions u of ⌃ to be
Lebesgue measurable. Denoting by U the set of all Lebesgue measurable
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functions with values in S, we have that U describes the set of all permis-
sible input functions of ⌃. Similarly, denote by V the set of all permissible
disturbance signals v of ⌃. Finally, a constraint is imposed on the output
of ⌃ in the form of a set Q of desirable output functions; only input func-
tions u 2 U that satisfy the requirement ⌃u 2 Q are desired.

In practice, the function f that describes the di↵erential equation of
⌃ usually depends on parameters whose values are not accurately known.
Let ⌃0 denote the version of the system ⌃ obtained when these parame-
ters are all at their nominal values and the disturbance signal v is zero.
Let ⌃

✏,v

be the system that results when the parameters of ⌃ experience
a perturbation ✏ from their nominal values, while an external disturbance
signal v(t) is present. The exact values of the perturbation ✏ and of the
disturbance signal v are not known. The only information provided is
that ✏ 2 E and v 2 V , where E and V are specified compact sets.

Consider now an optimization problem for the system ⌃ with a cost
function J : the objective is to find an input function u 2 U that minimizes
the value J(⌃u). To account for the perturbations and the disturbances,
the optimal function u is selected so that it minimizes J for the ‘worst’ in-
stances of perturbation and disturbance. The optimal value J

o of J is then

J

o = inf
u2U

sup
✏2E,v2V

{J(⌃
✏,v

u) : ⌃
✏,v

u 2 Q}. (2)

Assume that there is an optimal input function u

⇤ 2 U that satisfies
(2). Given a number � > 0, denote by N

�

(Q) a neighborhood of radius �

around the constraint Q. Then, N

�

(Q) is the set of all state trajectories
x(t), t 2 [0, t

f

], that deviate by no more than � from the constraint Q.
In these terms, we show that the performance achieved by the optimal
input function u

⇤ can be approximated by a bang-bang input function, as
follows.

THEOREM. For every real number � > 0, there is a bang-bang in-
put function u

±(t) 2 U such that |J(⌃
✏,v

u

⇤) � J(⌃
✏,v

u

±)|  � and
⌃

✏,v

u

± 2 N

�

(Q) for all ✏ 2 E and all v 2 V . }

As we can see, the bang-bang input function u

± approximates the per-
formance obtained from the optimal input function u

⇤ to any desirable
accuracy � > 0. Reduction of the error � comes at the cost of increasing
the number of switches of the bang-bang function u

±.

Bang-bang input functions o↵er significant advantages in computa-
tion and implementation, as bang-bang functions are determined solely
by their switching times. The use of bang-bang approximations reduces
the complex problem of computing and implementing an optimal input
function into a search and implementation of the switching times of u

±.
An application of this result to a specific min-max optimization problem
can be found in [1].
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