
International Journal of Control, 2016
Vol. 89, No. 1, 193–209, http://dx.doi.org/10.1080/00207179.2015.1064547

Automatic defensive control of asynchronous sequential machines

Jacob Hammer∗

Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611-6130, USA

(Received 11 March 2015; accepted 16 June 2015)

Control theoretic techniques are utilised to develop automatic controllers that counteract robotic adversarial interventions in
the operation of asynchronous sequential machines. The scenario centres on automatic protection against pre-programmed
adversarial agents that attempt to subvert the operation of an asynchronous computing system. Necessary and sufficient
conditions for the existence of defensive controllers that automatically defeat such adversarial agents are derived. These
conditions are stated in terms of skeleton matrices – matrices of zeros and ones obtained directly from the given description
of the asynchronous sequential machine being protected. When defensive controllers exist, a procedure for their design is
outlined.

Keywords: adversarial intervention; feedback control; asynchronous sequential machines

1. Introduction

Adversarial agents that attempt to intervene in the operation
of computing systems and networks have become alarm-
ingly prevalent in recent years. The development of defen-
sive mechanisms to counteract actions by such adversarial
agents is increasingly turning into a prominent engineering
enterprise. Often, such adversarial agents take the form of
pre-programmed proxies implanted in computing systems,
acting as adversarial controllers attempting to impair the
stricken system and subject it to sinister objectives. Ex-
amples of such pre-programmed entities include computer
viruses, computer worms, computer trojan horses, and other
forms of malware. Contemporaneously with the rise in ad-
versarial interventions, asynchronous sequential machines
– platforms of high-speed computing – have been gaining
in popularity to help fulfil the growing demand for com-
puting power (Martin & Nyström, 2006; Sparsø & Furber,
2001; Tinder, 2009). As a result, it has become more urgent
to develop a general theoretical framework for the analy-
sis, design, and implementation of defensive mechanisms
against adversarial interventions in the operation of asyn-
chronous sequential machines.

In addition to their important role in computing sys-
tems and networks, asynchronous sequential machines also
model the operation of signalling chains in molecular biol-
ogy. Here, adversarial interventions take the form of bio-
logical viruses, senescence, and biochemical contaminants.
Automatic controllers that can counteract such adversarial
interventions can be implemented by inserting artificially
produced genetic elements into affected cells.

∗
Email: hammer@mst.ufl.edu

Traditionally, the fight against adversarial software
agents has been conducted mainly through the use of ad
hoc techniques and ‘tricks’ in attempts to detect, misdirect,
or outwit these software agents and neutralise their impact
(e.g., Szor, 2005). The present paper takes a different ap-
proach, employing a systematic mathematical framework
and utilising the tools of modern control theory to develop
automatic means to counteract pre-programmed adversarial
agents. The paper focuses on the development of automatic
controllers that negate actions of pre-programmed adver-
sarial agents attempting to interfere with the operation of
an asynchronous sequential machine.

Specifically, we examine an asynchronous machine !

tasked with reaching a prescribed beneficial target state,
while a pre-programmed adversarial controller attempts to
overtake ! and drive it toward a harmful state. The situation
is depicted in Figure 1, which shows ! being operated by
two controllers: an adversarial controller CA and a defen-
sive controller CD. We assume that the state x of ! is avail-
able as output, so that CA and CD are both state feedback
controllers. The adversarial controller CA may represent a
virus or another adversarial entity that attempts to subvert
!, while the defensive controller CD represents a defensive
mechanism designed to counteract actions of CA and guide
! to a desirable state. In the figure, CA and CD act through
separate input channels; this includes the special case where
both controllers act via the same input channel.

The controllers CA and CD of Figure 1 are asynchronous
machines with no external input signals; they operate as pre-
programmed autonomous state feedback controllers. Each

C⃝ 2015 Taylor & Francis

D
ow

nl
oa

de
d 

by
 [J

ac
ob

 H
am

m
er

] a
t 2

1:
36

 0
9 

Fe
br

ua
ry

 2
01

6 

http://dx.doi.org/10.1080/00207179.2015.1064547
mailto:hammer@mst.ufl.edu


194 J. Hammer

Σ x

u

υ

CA

A−action

D−action

CD

Figure 1. Adversarial/defensive control.

controller has its own performance objective. The com-
posite machine described by Figure 1 is an asynchronous
machine denoted by !(CA, CD).

The controllers CA and CD operate in alternating turns;
during its turn, each controller administers a string of com-
mands to the machine !, while the other controller is at
rest. The ultimate objective of each controller is to drive !

into a target set of states that is specific to that controller.
We denote by TA the target set of the controller CA and by
TD the target set of the controller CD. As CA and CD have
opposing objectives,

TA ∩ TD = ∅,

the empty set. A controller prevails when ! reaches one
of its target states, at which point the control process
of Figure 1 terminates. We concentrate on the following
questions.

Problem 1.1: For the control configuration of Figure 1,

(i) Characterise the conditions under which each one
of the controllers can prevail.

(ii) Characterise states of the machine ! from which
each one of the controllers is guaranteed to prevail.

(iii) If a controller cannot prevail, characterise the con-
ditions under which it can prevent the other con-
troller from prevailing.

In Sections 4 and 5, we derive necessary and sufficient
conditions under which one of the controllers CA or CD

can prevail. These conditions are stated in terms of cer-
tain skeleton matrices – matrices of zeros and ones derived
from the given description of the controlled machine !. In
Section 5, we also characterise states of ! from which one
of the controllers is guaranteed to prevail (when using an
appropriate strategy), irrespective of actions taken by the
other controller. When it is possible for one of the con-
trollers to prevail, an appropriate controller design process
is outlined in Section 4. The design process is based on a
certain matrix of strings – the matrix of stable transitions,

derived directly from the given description of the controlled
machine !.

To guarantee deterministic behaviour, asynchronous
machines must be operated under certain rules, collectively
referred to as ‘fundamental mode operation’. We discuss
these rules in the remaining parts of this section.

1.1 Fundamental mode operation

An asynchronous sequential machine is a continuous-time
nonlinear system with discrete and finite state, input, and
output sets. Denoting the state set of the machine by X, its
input set by U, its output set by V, and its initial state by
x0, the operation of the machine is governed by a recursion
function ψ : X × U → X and an output function η: X → V
according to the recursion

xk+1 = ψ(xk, uk),

vk = η(xk), k = 0, 1, 2, . . . ,

where x0, x1, x2, . . . ∈ X form a string of states; u0, u1, u2,
. . . ∈ U form a string of input characters; and v0, v1, v2,
. . . ∈ V form the corresponding string of output characters.
The integer k is the step counter.

The machine is in a stable state if x = ψ(x, u); then,
(x, u) is a stable combination. In a stable combination, the
machine stays in its current state x until a new input takes
effect.

When the pair (x, u) is not a stable combination, it
is called a transient combination. A transient combination
(x, u) gives rise to a chain of transitions

x1 = ψ(x, u), x2 = ψ(x1, u), x3 = ψ(x2, u), . . . (1.2)

with the same input character u. The duration of a transient
step of an asynchronous machine is short and indetermi-
nate. The machine progresses through a transient step at
the speed limit of its components, which may depend on
temperature, component condition, and other factors. Steps
in a transition chain are not synchronous with any event.
In an ideal asynchronous machine, a transient step is com-
pleted in zero time.

As a result of high speed and asynchrony, it is unde-
sirable to change the input of an asynchronous machine
during a chain of transitions: it is impossible to predict
in what state the machine will be, when the input change
takes effect. As an example, consider the transition chain of
(1.2). Assume that one attempts to change the input char-
acter from u to u′ right after the machine has reached the
state x1. This leads to a ‘race’: will the input change take
effect before the machine moves to the next state x2, result-
ing in the pair (x1, u′); or will the input change take effect
thereafter, resulting instead in the pair (x2, u′), or may be
the pair (x3, u′), or may be a later pair? The answer to this

D
ow

nl
oa

de
d 

by
 [J

ac
ob

 H
am

m
er

] a
t 2

1:
36

 0
9 

Fe
br

ua
ry

 2
01

6 



International Journal of Control 195

question may depend on unpredictable conditions, such as
temperature and component condition. As the response of
the machine may be different in each case, an attempt to
change the input during a chain of transitions may result in
a non-deterministic response.

This argument gives rise to the notion of fundamen-
tal mode operation (e.g., Kohavi, 1978), whereby input
changes are allowed only when an asynchronous machine
is in a stable state. Fundamental mode operation assures a
deterministic outcome.

1.2 Asynchronous trigger machines

An asynchronous trigger machine is an asynchronous ma-
chine that is operated by trigger inputs, namely, by inputs
formed by short pulses that are, ideally, of zero duration
(e.g., Kohavi, 1978). Each trigger carries a single input
character; a trigger machine receives no input between con-
secutive triggers. In response to a trigger, the machine un-
dergoes a string of transitions to reach a stable state, namely,
a state at which the machine lingers until the next trigger
input arrives. Such transitions occur very quickly (ideally,
in zero time), and no input is present during transition.

Trigger machines are very common. Most asyn-
chronous digital computers operate as trigger machines:
a computer program invokes a momentary command, after
which the computer proceeds into a chain of transitions to
its next stable state. Trigger machines are somewhat eas-
ier to analyse, since the progression of the machine after a
trigger is input free.

Considering the wide prevalence of asynchronous trig-
ger machines in applications, we focus our attention in this
paper exclusively on such machines. The results can be
generalised to other types of asynchronous machines as
well.

Assumption 1.3: The machines !, CA, and CD of Figure 1
are asynchronous trigger machines.

1.3 Asynchronous trigger machines with two
inputs

The machine ! of Figure 1 is an asynchronous input/state
trigger machine with two inputs; it is characterised by a
quintuple ! = (A, D, X, f, x0), where A and D are non-
empty input alphabets; X is the state set; f: X × (A × D) →
X is a partial function serving as the recursion function; and
x0 is the initial state. The machine starts at the initial state
x0 and is driven by strings of trigger input pairs (u0, υ0)(u1,
υ1)(u2, υ2). . . , where ui ∈ A and υ i ∈ D, i = 0, 1, 2, . . . In
response, ! generates a string of states x0x1x2. . . according
to the recursion

! : xk+1 = f (xk, (uk,υk)), k = 0, 1, 2, . . . (1.4)

A triplet (x, (u, υ)) ∈ X × (A × D) is a valid combination
if the function f is defined at it. A valid combination (x,
(u, υ)) is a stable combination if x = f (x, (u, υ)), namely,
if the machine ! rests at the state x; in that case, x is a
stable state. If x ̸= f (x, (u, υ)), then x is a transient state; an
asynchronous machine leaves a transient state very quickly
(ideally, in zero time).

Notation 1.5:

(i) Consider the asynchronous trigger machine ! =
(A, D, X, f, x0) of Figure 1. As transitions of an
asynchronous trigger machine progress with no in-
put after a trigger, it is convenient to add the extra
character ‘¬’ to the alphabets A and D to denote the
absence of a trigger. Then, a pair (u, ¬) ∈ A × D
means that the character u is triggered into input A,
while no trigger is applied to input D; similarly, (¬,
υ) ∈ A × D means that the character υ is triggered
into input D, while no trigger is applied to input A.
The pair (¬, ¬) indicates that no trigger is applied
to either input.

(ii) For a non-empty set S, we denote by S+ the class
of all non-empty strings of elements of S.

(iii) The state set of ! is always taken as X = {x1, x2, . . . ,
xn}. A subset of states S = {xi1 , xi2 , . . . , xiq } ⊆ X

is often identified with the set of integers S = {i1,
i2, . . . , iq}.

1.4 Fundamental mode operation and trigger
machines

In an asynchronous environment, one cannot assume that
two independent triggers occur simultaneously. Indeed,
when attempting simultaneous independent triggers, asyn-
chrony entails that, inevitably, one trigger will appear before
the other. Furthermore, it is impossible to predict which of
the two triggers will appear first, since this may depend
on erratic and unpredictable operating conditions, such as
temperature or equipment condition. Considering that the
outcome of sequential triggers may depend on the order
in which the triggers appear, it follows that an attempt to
induce simultaneous triggers may lead to an unpredictable
outcome. Thus, to guarantee deterministic behaviour, si-
multaneous triggers are prohibited.

Assume now that the asynchronous trigger machine
! = (A, D, X, f, x0) is at a stable state x, when it re-
ceives the input trigger (u, υ) ∈ (A × D); here, one of u or
υ must be the empty character ¬. Recalling that no inputs
are received between triggers, this trigger results in a chain
of transitions of the form

x1 = f (x, (u,υ)), x2 = f (x1, (¬,¬)),

x3 = f (x2, (¬,¬)), . . . , (1.6)

D
ow

nl
oa

de
d 

by
 [J

ac
ob

 H
am

m
er

] a
t 2

1:
36

 0
9 

Fe
br

ua
ry

 2
01

6 



196 J. Hammer

which may or may not terminate. If this chain of transitions
does not terminate, then ! has an infinite cycle. In this paper,
we concentrate exclusively on machines with no infinite
cycles (the control of asynchronous machines with infinite
cycles is considered in Venkatraman and Hammer (2006a,
2006b).

Assumption 1.7: The asynchronous machine ! of Figure 1
has no infinite cycles.

As ! has no infinite cycles, the chain of transitions (1.6)
must terminate. Therefore, there is an integer i ≥ 1 such
that

xi = f (xi, (¬,¬)), (1.8)

so that xi is a stable state of !. We refer to xi as the next
stable state of the triplet (x, (u, υ)). All other states in
the transition chain (1.6) are transient states. In view of
Assumption 1.7, every valid combination has a next stable
state. Note that the machine ! remains in a stable state until
a new trigger input appears.

Considering that a trigger machine has no persistent
inputs, it follows that, between triggers, the progression of
an asynchronous trigger machine is entirely determined by
the state of the machine. This implies the following feature.

Fact 1.9: In an asynchronous trigger machine !, once a
transition chain has been triggered, its progression is de-
termined only by the states it encounters; the input plays no
role after initiating the transition chain. Between triggers,
a state x of ! is either always a stable state or always a
transient state.

Using the notion of next stable state, we introduce a
partial function s: X × (A × D) → X defined on all valid
combinations of ! by setting s(x, (u, υ)) := x′, where x′ is
the next stable state of (x, (u, υ)). The function s is called
the stable recursion function of !.

A potential indeterminacy may arise when attempting
to apply an input trigger, while a machine is in a transient
state. As transition through a transient state is quick and
unsynchronised, a trigger input aimed at a transient state
may actually materialise after the machine has left that
state. As a result, the actual state at which the trigger occurs
is unpredictable, and hence so may be the outcome of such
a trigger.

To prevent uncertainties and achieve deterministic be-
haviour, it is common practice to operate asynchronous
trigger machines in fundamental mode operation, where no
more than one input is triggered at a time, and input triggers
appear only when machines are in stable states (e.g., Ko-
havi, 1978). When applied to the configuration of Figure 1,
this implies the following.

Rule 1.10: Fundamental mode operation. Let ! = (A,
D, X, f, x0) be an asynchronous trigger machine with two
inputs. Assume that ! is at a stable state x, when it is

activated by a string of input triggers (u1, υ1)(u2, υ2). . . ∈
(A × D)+ . Then, the following must be observed.

(i) Only one input of ! may be triggered at a time,
namely, either ui = ¬ or υ i = ¬ for all i = 1, 2, . . .

(ii) No input triggers appear, while ! is in transition.

Let s be the stable recursion function of !. When ap-
plying to ! an input string

(u,υ) = (u1,υ1)(u2,υ2) . . . (uj ,υj ) (1.11)

in fundamental mode operation, only one character of each
input pair is triggered, and we must wait after each input
trigger for ! to reach its next stable state, before applying
the next input trigger. This leads the machine to the final
stable state

s(x, (u,υ)) := s(. . . s(s(x, (u1,υ1), (u2,υ2)) . . . (uj ,υj )).

As transitions of asynchronous machines are quick (they
occur, ideally, in zero time), the necessary waiting time
between triggers is negligible. This also entails that users
of asynchronous machines are aware only of stable states,
since transients disappear quickly; the performance of an
asynchronous machine is determined by its stable state
behaviour.

A stable transition is a transition in fundamental mode
operation from a stable state to a stable state. A state x′ is
stably reachable from a state x if there is a stable transition
from x to x′. Applying Rule 1.10 to the configuration of
Figure 1 leads to the following.

Rule 1.12: Referring to the machines !, CA, and CD of
Figure 1,

(i) No more than one of these machines may trigger
at a time, and the trigger must be directed to a
machine that is in a stable state; and

(ii) When one of these machines is in transition, the
other two are in stable states.

Rule 1.12 guarantees fundamental mode operation of
the composite machine !(CA, CD), thus assuring a deter-
ministic response. The following terminology is used re-
peatedly in our discussion.

Definition 1.13: Let ! = (A, D, X, f, x0) be an asyn-
chronous trigger machine with the two inputs A and D, and
let x and x′ be two states of !.

(i) A-action is a string of triggers applied in funda-
mental mode operation to input A of !, with input
D inactive.

D
ow

nl
oa

de
d 

by
 [J

ac
ob

 H
am

m
er

] a
t 2

1:
36

 0
9 

Fe
br

ua
ry

 2
01

6 



International Journal of Control 197

(ii) D-action is a string of triggers applied in funda-
mental mode operation to input D of !, with input
A inactive.

(iii) x′ is stably reachable from x by A-action if there is
an A-action that takes ! from a stable state at x to
a stable state at x′.

(iv) x′ is stably reachable from x by D-action if there is
a D-action that takes ! from a stable state at x to a
stable state at x′.

As mentioned before, users of an asynchronous ma-
chine are affected only by stable states, since transitions
through transient states are quick. Thus, when controlling
an asynchronous machine, only stable states matter for per-
formance. In particular, members of the target sets TA and
TD of ! are all stable states.

1.5 Controller turns

In the configuration of Figure 1, we assume that it is in
the best interest of both controllers to maintain a deter-
ministic response of the closed-loop machine !(CA, CD).
As a result, the controllers CA and CD operate in alternating
turns, complying with fundamental mode operation. During
each turn, one of the controllers is active, while the other
one rests in a stable state. The active controller attempts
to drive the machine ! in fundamental mode operation to
one of that controller’s target states. If such a target state
is stably reachable through that controller’s action, then the
controller prevails, and the control process terminates. Oth-
erwise, the active controller drives ! to a stable state most
favourable to its objectives and pauses; the other controller
then activates to start its own turn.

To express a controller’s objectives in quantitative
terms, we assign a weight to each state of the machine
!: members of the adversarial target set TA have the lowest
weight, while members of the defensive target set TD have
the highest weight. In each turn, the adversarial controller
CA takes ! to a lowest weight state stably reachable by
A-action, while CD takes ! to a highest weight state stably
reachable by D-action.

This framework represents many common applications;
consider, for example, a power utility operated by a com-
puter control system. In somewhat oversimplified terms, at
each attempt, an adversarial controller aims to take the sys-
tem to a state of lowest power generation, while a defensive
controller aims to take the system to a state of highest power
generation.

In Sections 4 and 5, we characterise all possible out-
comes of this turn-by-turn control process. Specifically,
there are three possible outcomes: (1) One of the controllers
prevails; (2) the composite machine !(CA, CD) reaches
a stable state that is not a target state of any controller;
or (3) the composite machine !(CA, CD) enters an infi-
nite cycle. Assuming that both controllers employ the best

control strategies, the outcome of the control process is
pre-ordained by the stable reachability features of the con-
trolled machine !. In Sections 4 and 5, we derive necessary
and sufficient conditions for each possible outcome. These
conditions are stated in terms of skeleton matrices of ! –
certain matrices of zeros and ones derived directly from
the given recursion function of the machine !. Appropriate
controller designs are also outlined.

Another interesting question is whether there are any
states of the machine ! from which one of the controllers
can always prevail, irrespective of actions taken by the other
controller. We characterise such states in Section 5. In the
same section, we also characterise states of ! from which
one of the controllers can always block the other controller
from prevailing. In all cases, the structure of appropriate
controllers is outlined.

1.6 General background

The present paper is written within the framework for the
control of asynchronous sequential machines of Murphy,
Geng, and Hammer (2002, 2003), Geng and Hammer
(2005), Venkatraman and Hammer (2006a, 2006b), Yang
and Hammer (2008, 2010), Peng and Hammer (2010,
2012), Yang (2011), and Yang and Kwak (2010). In
particular, the current study continues the work of Yang
and Hammer (2010), where the protection of asynchronous
machines against adversarial interventions is considered,
with a focus on model matching in the face of unspecified
adversarial interventions. The present study examines the
design of pre-programmed automatic controllers that coun-
teract the actions of pre-programmed adversarial agents.
Protection against adversarial agents is important in many
applications, including high-speed computing systems,
asynchronous networks, computer controlled utilities, and
other computer-controlled services, as well as in the fight
against viruses and senescence in molecular biology. A
byproduct of our discussion is also a methodology for the
design of effective adversarial agents.

There is an extensive literature on the control of finite
state sequential machines, including publications such as
Thistle and Wonham (1994), Hammer (1994, 1996), Kumar,
Nelvagal, and Marcus (1997), Barrett and Lafortune (1998),
Di Benedetto, Sangiovanni-Vincentelli, and Villa (2001),
Yevtushenko, Villa, Brayton, Petrenko, and Sangiovanni-
Vincentelli (2008), the references cited in these publica-
tions, and many others. The studies mentioned in this para-
graph do not address issues that are specific to the operation
of asynchronous sequential machines, such as the distinc-
tion between stable and transient states or the requirement
of fundamental mode operation.

The paper is organised as follows. Section 2 introduces
the formalism necessary for handling asynchronous ma-
chines with multiple inputs. This formalism is further de-
veloped in Sections 3 and 4, where the notions of ‘matrix

D
ow

nl
oa

de
d 

by
 [J

ac
ob

 H
am

m
er

] a
t 2

1:
36

 0
9 

Fe
br

ua
ry

 2
01

6 



198 J. Hammer

of stable transitions’ and ‘skeleton matrix’ of Murphy et al.
(2002, 2003) are adapted to asynchronous machines with
multiple inputs. The resulting notions are then utilised in
Sections 4 and 5 to derive necessary and sufficient condi-
tions for one of the controllers of Figure 1 to prevail, as well
as to outline procedures for controller design. An example
runs through the entire paper to highlight notions and to
demonstrate constructions.

2. Basic notions

2.1 State weights

Let ! = (A, D, X, f, x0) be an asynchronous trigger ma-
chine controlled by two asynchronous trigger machines CA

and CD as depicted in Figure 1. Recall that the controllers
CA and CD operate in alternating turns; a controller’s turn
starts after the other controller has stably reached a ‘most
favourable outcome’. The term ‘most favourable outcome’
is quantified through state weights, as follows.

Definition 2.1: Let ! = (A, D, X, f, x0) be an asynchronous
trigger machine with the target sets TA, TD ⊆ X. An integer
valued function ω: X → Z is a weight function for ! if

(i) TA is the set of states at which ω is maximal; and
(ii) TD is the set of states at which ω is minimal.

As we can see from Definition 2.1, the weight function
assigns a weight – an integer value – to each state. The
adversarial controller’s objective is to take ! to a lowest
weight state, while the objective of the defensive controller
is to take ! to a highest weight state. Using the weight
function, we can clarify the discussion of Section 1.5 in the
following way.

Rule 2.2: Let ! be an asynchronous trigger machine with
weight function ω, operated by the two controllers CA and
CD of Figure 1. In its turn, each controller drives ! to a
stably reachable extremal weight state: CA ends its turn at
a lowest weight state of ! that is stably reachable by A-
action, while CD ends its turn at a highest weight state of
! that is stably reachable by D-action.

Example 2.3: Consider a stable state asynchronous trigger
machine ! = (A, D, X, s, x0), where A = {a1, a2}, D = {d1,
d2}, X = {x1, x2, x3, x4, x5}, initial state x0 = x1, and stable
recursion function s given by Table 1; the sixth column of
the table is the weight function ω of !. As we can see from
the table, the target sets are TA = {x3} and TD = {x5}. Input
combinations not listed in the table are forbidden.

Needless to say, at some point, the controlled machine !

can have several stably reachable states of the same extremal
weight. In the name of efficiency, a controller stops at the
first extremal weight state it stably reaches. This leads to
the following refinement of Rule 2.2.

Table 1. Stable transitions of !.

xi (a1, ¬) (a2, ¬) (¬, d1) (¬, d2) ω(xi) Target set

x1 x1 x4 x1 x2 4
x2 x1 x3 x2 x1 4
x3 x1 x1 x4 x5 1 ∈ TA

x4 x4 x1 x1 x2 3
x5 x1 x4 x1 x2 5 ∈ TD

Rule 2.4: Operating policy. Let ! = (A, D, X, f, x0) be
an asynchronous trigger machine operated by two asyn-
chronous trigger controllers – an adversarial controller CA

and a defensive controller CD, as depicted in Figure 1. Let
TA be the adversarial target set, let TD be the defensive
target set, and let ω: X → Z be the weight function of !.
Then, the controllers CA and CD operate in alternate turns
as follows.

(i) Start: !, CA, and CD are in stable states at their
initial conditions, when CA acts first.

(ii) Turns: In its turn, each controller drives ! in funda-
mental mode operation to an extremal weight stably
reachable state, stopping and ending its turn at the
first extremal weight state of ! it stably reaches.
Here, CA employs A-action and CD employs D-
action; extremal weight is lowest weight for CA and
highest weight for CD. Each controller lingers in a
stable state during the other controller’s turn.

(iii) Progression:
(a) Each controller activates when the other con-

troller has reached the end of a turn.
(b) A controller forfeits its turn if all states of ! it

can stably reach are target states of the other
controller.

(iv) Target states: both controllers remain in a stable
state, once ! has reached a target state.

Note that, by Rule 2.4(ii), if a controller starts its turn
at a state x of ! whose weight is equal to the appropriate
extremal weight of any state stably reachable from x by that
controller, then ! will remain at x as the controller’s turn
ends.
Example 2.5: To demonstrate Rule 2.4, refer to Table 1 and
recall that ! has the initial state x1. Then, in the initial turn,
CA takes ! to x4, as this is the lowest weight stably reachable
state from x1 by A-action. Then, in the next turn, the highest
weight stably reachable states from x4 by D-action are x1

and x2. It is up to the designer of the controller CD to select
which of these two transitions would be implemented. Note
that a transition to x2 would form a poor choice, since it
would allow the controller CA to prevail in its next turn. A
transition to x1 would lead the closed-loop machine !(CA,
CD) to an infinite cycle; although not ideal, this would be a
better choice in this case.

D
ow

nl
oa

de
d 

by
 [J

ac
ob

 H
am

m
er

] a
t 2

1:
36

 0
9 

Fe
br

ua
ry

 2
01

6 



International Journal of Control 199

A brief examination of Rule 2.4 shows that the follow-
ing statement characterises the conditions under which the
composite machine !(CA, CD) of Figure 1 reaches a stable
state at the end of the control process. Note that, if a stable
state is reached, it is reached very quickly (ideally, in zero
time), since the entire process constitutes a transient of the
closed loop machine.

Proposition 2.6: Let ! = (A, D, X, f, x0) be an asyn-
chronous trigger machine with weight function ω: X →
Z and target sets TA and TD, and assume that ! is con-
trolled in compliance with Rule 2.4. Then, (i) and (ii) are
equivalent.

(i) The control process terminates with ! in a stable
state at the state x.

(ii) x is a target state of !, or
all states stably reachable from x by both A-action
and D-action have the same weight as x.

2.2 The local sink

As our previous discussion intimates, the sets of extremal
weight states that are stably reachable from a given state play
an important role. This leads us to the following notion.

Definition 2.7: Let ! = (A, D, X, f, x0) be an asynchronous
trigger machine, and let x ∈ X be a stable state of !. Denote
by S(x, A) (respectively, S(x, D)) the set of all states that
are stably reachable from x by A-action (respectively, by D-
action). Then, the local A-sink SA(x) consists of the lowest
weight states that are stably reachable from x by A-action,
namely

SA(x) := {x ′ ∈ S(x,A) : ω(x ′) ≤ ω(x ′′) for all x ′′ ∈ S(x,A)}.

Similarly, the local D-sink SD(x) consists of the highest
weight states that are stably reachable from x by D-action,
namely,

SD(x) := {x ′ ∈ S(x,D) : ω(x ′) ≥ ω(x ′′) for all x ′′ ∈ S(x,D)}.

Example 2.8: Referring to the machine ! of Example 2.3,
we can see from Table 1 that SD(x4) = {x1, x2}.

By using state feedback, one can determine whether or
not ! has reached a stable state at a member of the local
sink, as follows.

Lemma 2.9: Let ! = (A, D, X, f, x0) be an asynchronous
trigger machine with weight function ω, operated by the
two controllers of Figure 1 in compliance with Rule 2.4.
Then, it can be determined by state feedback whether (and
at what state) ! has reached the end of a controller turn.

Proof: Assume by induction that the statement of the
lemma is true for turn j, where j ≥ 0 is an integer. Let x be
the state of ! at the end of turn j, where x = x0 for the initial
turn j = 0. Assume further that the next turn, turn j + 1, is

a turn of the controller CA. Then, by our induction assump-
tion, ! is in a stable state at a known state x ∈ X, when CA

starts its turn. As CA and CD both employ state feedback,
the state x is known at both controllers. Consequently, the
local sink SA(x) is known at both controllers, since the local
sink is determined by x and the given recursion function f
of !. According to Rule 2.4(ii), the controller CA takes !

to a stable state at a member x′ ∈ SA(x), terminating its turn
at the first member of SA(x) it encounters. Using state feed-
back, CD detects when ! has reached a member of SA(x)
and starts its turn. Hence, the lemma is valid for turn j + 1,
when it is a turn of CA. The case where turn j + 1 is a turn
of CD is similar. This concludes our proof. !

The next statement shows that the operating policy of
Rule 2.4 guarantees fundamental mode operation.

Proposition 2.10: Let ! = (A, D, X, f, x0) be an asyn-
chronous trigger machine with weight function ω, operated
by the two controllers CA and CD of Figure 1 in compli-
ance with Rule 2.4. Then, the composite machine !(CA,
CD) operates in fundamental mode.

Proof: To show fundamental mode operation, we have to
show that (1) fundamental mode operation is preserved
during each controller turn; and that (2) fundamental mode
operation is preserved when switching from one controller
turn to the next. Now, (1) is valid by Rule 2.4(ii). Further-
more, (2) is a consequence of Lemma 2.9 since, according
to the lemma, each controller can determine by state feed-
back when the other controller has reached the end of a
turn. This concludes our proof. !

Controllers CA and CD that control the machine ! in
compliance with Rule 2.4 can be constructed by the fol-
lowing process (compare to Murphy et al. (2002, 2003) and
Geng and Hammer (2005)).

Construction 2.11: Building the controllers CA and CD:
Referring to Figure 1, let ! = (A, D, X, f, x0) be an asyn-
chronous trigger machine with stable recursion function s:
X × (A × D) → X, weight function ω: X → Z, and target
sets TA and TD. For a stable state x ∈ X, let SA(x) be the local
A-sink of ! and let SD(x) be the local D-sink.

The controller CA of Figure 1 is an asynchronous trig-
ger machine that consists of two parts: an observer O and
an action part Ca

A. The observer O detects the end of a
controller turn for both CA and CD turns. The action part
Ca

A is activated by O at the end of a CD turn; Ca
A gener-

ates the A-action input string that drives ! in fundamental
mode operation during the turn of CA. The structure of the
controller CD is similar – it consists of the observer O and
an action part Ca

D analogous to Ca
A.

D
ow

nl
oa

de
d 

by
 [J

ac
ob

 H
am

m
er

] a
t 2

1:
36

 0
9 

Fe
br

ua
ry

 2
01

6 



200 J. Hammer

Part I. Building the observer O: Let χA and χD be two
distinct characters not included in the sets A, D or X. We
use these as output characters of O: a trigger of χA by O
activates Ca

A to start a CA turn, while a trigger of χD by O
activates Ca

D to start a CD turn. The observer O has access
to the state of ! through state feedback; it is constructed by
following the proof of Lemma 2.9. For a CA turn that starts
at the state x ∈ X, the observer O detects when ! stably
reaches a state of SA(x). Similarly, for a CD turn that starts
at x, the observer O detects when ! stably reaches a state
of SD(x).

The observer is implemented by a function φ: X × X ×
{A, D, N} → X × {χA, χD}: (x, z, ζ ) ,→ (x′, χ ), where
x is the state of ! at the start of a controller turn; z is the
current state of !; the character ζ indicates which controller
is currently active – CA, CD, or no controller is active; x′

indicates the state of ! at the end of a controller’s turn; and
χ is one of the trigger characters χA, χD activating the next
controller action. The character ζ has three possible values:
A indicates that CA is active, D indicates that CD is active,
and N indicates that no controller is active.

Recalling that x0 is the initial state of !, applying Rule
2.4, and using the symbol \ for set difference, we define the
observer function φ as follows.

Initial turn:

φ(x0, x0, N) :=
{
χA if x0 /∈ TA ∪ TD;
¬ otherwise.

.

During a turn of CA that started at the state x of !:

φ(x, z,A) :=
{

(z,χD) if z ∈ SA(x) \ TA;
¬ otherwise.

During a turn of CD that started at the state x:

φ(x, z,D) :=
{

(z,χA) if z ∈ SD(x) \ TD;
¬ otherwise.

Note that O generates no further action after a stable
state was reached at a target state, in compliance with
Rule 2.4 (iv).

Part II. Building Ca
A: Assume that the configuration of

Figure 1 is in a stable state either at its initial state or at
the end of a CD turn; then, !, CA, and CD are all in stable
states. Let x be the stable state of !, where x = x0 initially
or, otherwise, x has been reached in compliance with Rule
2.4 at the end of a CD turn. According to Part I of this con-
struction, the observer O triggers the character χA upon
detecting the state x of !; this trigger is used in the present
construction to activate Ca

A. The controller CD rests in a
stable state during the action of Ca

A.

The first design step is to select a member of the local
sink x′ ∈ SA(x) with the following property: there is an
A-action input string u = u1u2 . . . uqA(x) ∈ (A × ¬)+ that
takes ! from a stable state at x to a stable state at x′ in
fundamental mode operation and without encountering any
members of SA(x) along the way. (The derivation of the
string u is discussed in Sections 3–5.) Here, qA(x) ≥ 0 is an
integer, where qA(x) = 0 indicates that CA takes no action,
leaving ! at its current state. Let x1x2 . . . xdA(x) be the string
of states through which u takes !; here, xdA(x) = x ′, where
x′ = x if qA(x) = 0. Considering that, in fundamental mode
operation, input triggers occur only at stable states, there are
integers i1, i2, . . . , iqA(x), where iqA(x) = dA(x), such that

xi1 = s(x, u1) and xik+1 = s(xik , uk+1),

k = 1, 2, . . . , qA(x) − 1, (2.12)

where xiqA (x) = x ′.
Let )A be the state set of Ca

A. We associate with the
transition chain (2.12) a subset of states, say {ξ 0,ξ 1

A(x),
ξ 2
A(x), . . . , ξ

qA(x)
A (x)} ⊆ )A, where ξ 0 is the stable state of

Ca
A at the start and at the end of any of its turns.

Let ϕA: )A × X × {χA, χD} → )A: (ξ , z, χ ) ,→ϕA(ξ , z,
χ ) be the recursion function of Ca

A; its values are determined
by the current state ξ of Ca

A, by the current state z of !, and
by the observer signal χ . In compliance with Rule 2.4, set

ϕA(ξ, z,χ )

:=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ξ 0 if ξ = ξ 0 and χ ̸= χA;
ξ 1
A(x) if ξ = ξ 0, z = x, and χ = χA;

ξ k+1
A (x)

if ξ = ξ k
A(x), z = xik , and χ = ¬,

k = 1, 2, . . . , qA(x) − 1;
ξ 0 if ξ = ξ

qA(x)
A (x), z = x ′ and χ = ¬.

(2.13)

The output function ηA: )A → (A × ¬) of Ca
A is then

ηA(ξ ) :=
{

(¬,¬) if ξ = ξ 0;
(uk,¬) if ξ = ξ

ik
A (x), k = 1, 2, . . . , qA(x).

(2.14)

This completes the construction of Ca
A. A brief examination

shows that this construction guarantees that CA drives ! in
fundamental mode operation in compliance with Rule 2.4
(compare to Murphy et al. (2002, 2003)).

Part III. Construction of CD: The controller CD consists
of the observer O constructed in Part I and an action part
Ca

D that is obtained by replacing the subscript A by the
subscript D in the construction of Ca

A above. This concludes
the construction of the controllers CA and CD.

D
ow

nl
oa

de
d 

by
 [J

ac
ob

 H
am

m
er

] a
t 2

1:
36

 0
9 

Fe
br

ua
ry

 2
01

6 



International Journal of Control 201

3. Matrix representations

3.1 Strings of pairs

Consider an asynchronous trigger machine ! = (A, D, X,
f, x0) with two input alphabets A and D. Each command
of ! is represented by a pair of characters (u, υ) ∈ A × D.
Fundamental mode operation (Rule 1.12) allows only one
of these characters to trigger at a time; thus, every input pair
(u, υ) satisfies either u = ¬ or υ = ¬. We use the symbol
A ⊗ D to denote all pairs of A × D in which one member is
¬, namely,

A ⊗ D := {(u,υ) ∈ A × D : u = ¬ or υ = ¬)}. (3.1)

As always, (A ⊗ D)+ represents the family of all non-empty
strings of members of A ⊗ D. For example, the string (u1,
¬)(u2, ¬)(¬, υ3) is a typical member of (A ⊗ D)+ . It is
convenient to use the character N – a character not included
in the sets A, D, or X – to represent the empty input set.
Then, concatenation of two members (a, b), (a′, b′) ∈ (A ⊗
D)+ ∪ N is defined by

conc((a, b), (a′, b′)) :

=
{

(aa′, bb′) if (a, b), (a′, b′) ∈ (A ⊗ D)+;
N if (a, b) = N or (a′, b′) = N.

(3.2)

To work with sets of input strings, we use the following
operation that is similar to union of sets. Given two subsets
S1, S2 ⊆ (A ⊗ D)+ ∪ N, their sum is

S1 0 S2 :=

⎧
⎨

⎩

S1 ∪ S2 if S1 ̸= N and S2 ̸= N,

S1 if S2 = N,

S2 if S1 = N.

Then, the concatenation of two sets of strings S1, S2⊆(A ⊗
D)+ ∪ N is

conc(S1, S2) :=
⊎

σ1∈S1,σ2∈S2

conc(σ1, σ2), (3.3)

where σ 1 and σ 2 are individual strings.

3.2 The matrix of stable transitions

The matrix of stable transitions (Murphy et al., 2002, 2003)
has proven to be an important tool in the design of con-
trollers for asynchronous machines, and it will serve an
important role in our present discussion as well. To adapt

the one-step matrix of stable transitions to machines with
multiple inputs, let ! = (A, D, X, Y, f, x0) be an asyn-
chronous trigger machine with inputs A and D, state set
X = {x1, x2, . . . , xn}, and stable recursion function s: X ×
(A ⊗ D) → X. Denote by A × ¬ the set of all pairs of the
form (u, ¬), where u ∈ A, and, similarly, by ¬× D the set
of all pairs of the form (¬, υ), where υ ∈ D. Here, the
set A × ¬ describes one-step A-action, while the set ¬× D
describes one-step D-action .

We build for ! two n × n one-step matrices of stable
transitions – the first one describes one-step A-action and
the second one describes one-step D-action; in both cases,
the character N indicates impossible transitions:

R1
ij (!, A) :=

{
{(u,¬) ∈ (A × ¬) : xj = s(xi, (u,¬))} if xj ∈ s(xi, (A × ¬)),
N otherwise;

R1
ij (!,D) :=

{
{(¬,υ) ∈ (¬ × D) : xj = s(xi, (¬,υ))} if xj ∈ s(xi, (¬ × D)),
N otherwise;

(3.4)

i, j = 1, 2, . . . , n.

Example 3.5: Referring to the machine ! of Example 2.3,
a direct examination of Table 1 yields

R1(!, A)

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

{(¬,¬),
(a1,¬)} N N {(a2,¬)} N

{(a1,¬)} {(¬,¬)} {(a2,¬)} N N

{(a1,¬),
(a2,¬)} N {(¬,¬)} N N

{(a2,¬)} N N
{(¬,¬),
(a1,¬)} N

{(a1,¬)} N N {(a2,¬)} {(¬,¬)}

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

R1(!,D)

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

{(¬,¬),
(¬, d1)} {(¬, d2)} N N N

{(¬, d2)} {(¬,¬),
(¬, d1)} N N N

N N {(¬,¬)} {(¬, d1)} {(¬, d2)}
{(¬, d1)} {(¬, d2)} N {(¬,¬)} N

{(¬, d1)} {(¬, d2)} N N {(¬,¬)}

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

To define operations between matrices of strings, let E
and F be two n × n matrices whose entries are subsets of
(A ⊗ D)+ ∪ N. Then, the i, j entry of the sum E + F is

(E + F )ij := Eij 0 Fij , i, j = 1, 2, . . . , n,

and the i, j entry of the product EF is

(EF )ij :=
⊎

ℓ=1,...,n

conc(Eiℓ, Fℓj ), i, j = 1, 2, . . . , n.

(3.6)

D
ow

nl
oa

de
d 

by
 [J

ac
ob

 H
am

m
er

] a
t 2

1:
36

 0
9 

Fe
br

ua
ry

 2
01

6 



202 J. Hammer

It is convenient here to define the n × n ‘identity’ matrix

I :=

⎛

⎜⎜⎜⎝

(¬,¬) N · · · N

N (¬,¬) N · · · N
... · · ·
N · · · N (¬,¬)

⎞

⎟⎟⎟⎠
.

Then, the powers of a matrix are defined by

E0 := I,

Eℓ := EEℓ−1, ℓ = 1, 2, 3, . . .

The combination E(p) of all powers up to the power of
p ≥ 1 is

E(p) := E1 + E2 + · · · + Ep. (3.7)

Using these operations, we build the matrices (R1(!,
A))(n − 1) and (R1(!, D))(n − 1). The following statement
paraphrases a statement of Murphy et al. (2002, 2003) and
is proved similarly.

Proposition 3.8: Let ! = (A, D, X, f, x0) be an asyn-
chronous trigger machine with the state set X = {x1, x2, . . . ,
xn} and the one-step matrices of stable transitions R1(!, A)
and R1(!, D). Then, the following are true for any stable
states xi, xj ∈ X:

(i) xj is stably reachable from xi through A-action if
and only if (R1(!, A))(n−1)

ij ̸= N .
(ii) xj is stably reachable from xi through D-action if

and only if (R1(!,D))(n−1)
ij ̸= N .

To relate the results of Proposition 3.8 to the control
configuration of Figure 1, we must take into account the
fact that Rule 2.4 restricts the machine ! to the local sink.
To enforce this requirement, we construct the following
matrices. Recall that a string u1 ∈ A+ is a strict prefix of a
string u2 ∈ A+ if there is a non-empty string u3 ∈ A+ such
that u2 = u1u3.

Construction 3.9: The matrix of A-stable transitions: Let
! = (A, D, X, f, x0) be an asynchronous trigger machine
with the state set X = {x1, x2, . . . , xn}, the weight function
ω: X → Z, and the one-step matrix of stable transitions
R1(!, A).

Perform the following steps on entries of (R1(!,
A))(n − 1) for each i = 1, 2, . . . , n:

Step 1: If xi ∈ TA ∪ TD, then replace all off-diagonal entries
of row i by N.

Step 2: If xi ∈ TD, then replace by N all off-diagonal entries
of column i.

Step 3: Let ζ A(i) be the set of all remaining integers j ∈
{1, 2, . . . , n} for which position j of row i is not N.
If ζA(i) ̸= ∅, denote by wA(i) the minimal weight
of a state that is stably reachable from xi through
A-action, namely,

wA(i) = min
j∈ζA(i)

ω(xj ).

Replace by N all entries j of row i for which ω(xj) >

wA(i).
Step 4: In row i, delete all strings that include as a strict

prefix a string that appears anywhere else in row i.
If any empty entries are obtained, replace them by
the character N.

Step 5: If an entry includes the string (¬, ¬), then delete
all other strings from this entry.

The resulting matrix is denoted by R(!, A) and is called
the matrix of A-stable transitions of !.

Example 3.10: Consider the machine ! of Example 2.3.
Raising the matrix R1(!, A) of Example 3.5 to the powers 1,
2, 3, and 4, finding (R1(!, A))(4), and applying Construction
3.9, yields the matrix of A-stable transitions of !: (For
typographical reasons, no more than one string is listed in
each entry.)

R(!, A) =

⎛

⎜⎜⎜⎜⎝

N N N {(a2,¬)} N

N N {(a2,¬)} N N

N N {(¬,¬)} N N

N N N {(¬,¬)} N

N N N N {(¬,¬)}

⎞

⎟⎟⎟⎟⎠
.

Remark 3.11: When calculating the matrix R(!, A), it
is usually not necessary to calculate all entries of (R1(!,
A))(n − 1). Instead, one can first determine which entries of
R(!, A) are N and avoid calculating the corresponding
entries of (R1(!, A))(n − 1).

The A-action skeleton matrix K(!, A) of the machine
! is defined from the matrix of A-stable transitions R(!,
A) by

Kij (!, A) :=
{

1 if Rij (!, A) ̸= N,

0 otherwise,
j = 1, 2, . . . , n.

(3.12)

Example 3.13: From Example 3.10, we obtain for the ma-
chine ! of Example 2.3:

K(!, A) =

⎛

⎜⎜⎜⎜⎝

0 0 0 1 0
0 0 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞

⎟⎟⎟⎟⎠
.

D
ow

nl
oa

de
d 

by
 [J

ac
ob

 H
am

m
er

] a
t 2

1:
36

 0
9 

Fe
br

ua
ry

 2
01

6 



International Journal of Control 203

The significance of the A-action skeleton matrix stems
from the next statement.

Proposition 3.14: Let ! = (A, D, X, f, x0) be an asyn-
chronous trigger machine with the state set X = {x1, x2, . . . ,
xn}, the matrix of A-stable transitions R(!, A), and the A-
action skeleton matrix K(!, A). Then, under Rule 2.4, one
turn of A-action can take ! from a state xi to a state xj if
and only if Kij(!, A) = 1.

When Kij(!, A) = 1, the entry Rij(!, A) consists of A-
action input strings that take ! from xi to xj in compliance
with Rule 2.4.

Proof: Considering Proposition 3.8(i),Construction 3.9 of
R(!, A) has the following implications. Step 1 of Con-
struction 3.9 guarantees that ! cannot move away from a
target state, once it has reached one; this fulfils Rule 2.4(iv).
Step 2 of Construction 3.9 assures compliance with Rule
2.4(iii)(b) by eliminating all input strings that may cause
A-action to drive ! into the defensive target set TD. Finally,
Steps 3–5 of Construction 3.9 assure compliance with Rule
2.4(ii) by allowing only first-time encounters with states
of the local A-sink. The last sentence of the proposition
follows by construction. This completes our proof. !

Replacing input A by input D in Construction 3.9 leads
to the following.

Construction 3.15: The matrix of D-stable transitions:
Let ! = (A, D, X, f, x0) be an asynchronous trigger machine
with the state set X = {x1, x2, . . . , xn}, the weight function
ω: X → Z, and the one-step matrix of stable transitions
R1(!, D).

Perform the following steps on the entries of (R1(!,
D))(n − 1) for each i = 1, 2, . . . , n:

Step 1: If xi ∈ TA ∪ TD, then replace all off-diagonal entries
of row i by N.

Step 2: If xi ∈ TA, then replace by N all off-diagonal entries
of column i.

Step 3: Let ζ D(i) be the set of all remaining integers j ∈
{1, 2, . . . , n} for which position j of row i is not N.
If ζD(i) ̸= ∅, denote by wD(i) the maximal weight
of a state that is stably reachable from xi through
D-action, namely,

wD(i) = max
j∈ζD (i)

ω(xj ).

Replace by N all entries j of row i for which ω(xj) <

wD(i).
Step 4: In row i, delete all input strings that include as a

strict prefix a string that appears anywhere else in
row i. If any empty entries are obtained, replace
them by the character N.

Step 5: If an entry includes the string (¬, ¬), then remove
all other strings from the entry.

The resulting matrix is denoted by R(!, D) and is called
the matrix of D-stable transitions of !.

Example 3.16: Consider the machine ! of Example 2.3.
Raising the matrix R1(!, D) of Example 3.5 to the powers 1,
2, 3, and 4, finding (R1(!, A))(4), and applying Construction
3.15, yields the matrix of D-stable transitions of !: (For
typographical simplicity, no more than one string is listed
in each entry.)

R(!,D)

=

⎛

⎜⎜⎜⎜⎝

{(¬,¬)} {(¬, d2)} N N N

{(¬, d2)} {(¬,¬)} N N N

N N {(¬,¬)} N N

{(¬, d1)} {(¬, d2)} N N N

N N N N {(¬,¬)}

⎞

⎟⎟⎟⎟⎠
.

Remark 3.17: Remark 3.11 also applies to the construc-
tion of the matrix R(!, D).

The D-action skeleton matrix K(!, D) of the machine
! is then

Kij (!,D) :=
{

1 if Rij (!,D) ̸= N,

0 otherwise,
j = 1, 2, . . . , n.

(3.18)

Example 3.19: From Example 3.16, the D-skeleton matrix
of the machine ! of Example 2.3 is:

K(!,D) =

⎛

⎜⎜⎜⎜⎝

1 1 0 0 0
1 1 0 0 0
0 0 1 0 0
1 1 0 0 0
0 0 0 0 1

⎞

⎟⎟⎟⎟⎠
.

The following statement is analogous to Proposition
3.14.
Proposition 3.20: Let ! = (A, D, X, f, x0) be an asyn-
chronous trigger machine with the state set X = {x1, x2, . . . ,
xn}, the matrix of D-stable transitions R(!, D), and the D-
action skeleton matrix K(!, D). Then, under Rule 2.4, one
turn of D-action can take ! from a state xi to a state xj if
and only if Kij(!, D) = 1.

When Kij(!, D) = 1, the entry Rij(!, D) consists of D-
action input strings that take ! from xi to xj in compliance
with Rule 2.4.

Recall from Automata theory that a terminal state is a
state from which a machine cannot be moved. Now, if a
diagonal entry of K(!, A) is 1, say Kjj(!, A) = 1, then xj

is a member of the local A-sink of itself. In that case, Rule
2.4(ii) implies that CA will leave ! at xj, and hence there
will be no transitions out from xj by A-action. It follows

D
ow

nl
oa

de
d 

by
 [J

ac
ob

 H
am

m
er

] a
t 2

1:
36

 0
9 

Fe
br

ua
ry

 2
01

6 



204 J. Hammer

then by Proposition 3.20 that all off-diagonal entries of row
j of K(!, A) are zero. Similarly, if a diagonal entry of K(!,
D) is 1, then all other entries of that row are zero. These
arguments lead to the following.

Proposition 3.21: Let ! = (A, D, X, f, x0) be an asyn-
chronous trigger machine operated in compliance with Rule
2.4 and having the state set X = {x1, x2, . . . , xn} and the
skeleton matrices K(!, A) and K(!, D). Then, the following
are true for any pair of integer j ∈ {1, 2, . . . , n}.

(i) xj is a terminal state for A-action if and only if
Kjj(!, A) = 1.

(ii) xj is a terminal state for D-action if and only if
Kjj(!, D) = 1.

4. Successive controller turns

4.1 The compound matrix of stable transitions

Let ! = (A, D, X, f, x0) be an asynchronous trigger machine
with the state set X = {x1, x2, . . . , xn} and the matrices of
stable transitions R(!, A) and R(!, D). Assume that ! is
controlled by the two controllers CA and CD of Figure 1
in compliance with Rule 2.4. The controllers CA and CD

operate in alternate turns starting from the initial state x0 =
xi of !, where CA is the first controller to act. By Proposition
3.14, the non-N entries of row i of R(!, A) characterise all
stable states to which CA could take ! at the end of its
first turn. The actual state to which ! will be taken by
CA depends on selections made during the design of CA.
According to Proposition 3.14, the (i, j) entry of R(!, A)
consists of strings that CA may generate to drive ! from the
state xi to the state xj. To achieve a transition to xj, one of
these strings is selected by the designer of CA and is used
in Construction 2.11 as part of the implementation of CA.

Once CA has completed its turn, the turn of CD starts.
Using the matrix multiplication (3.6), the stable states to
which CD could take ! at the end of its turn are charac-
terised by the non-N entries of row i of the product

R(!, A)R(!,D). (4.1)

Again here, only one of these states will actually be reached;
its identity is determined by selections made during the
design of CA and CD. Once CA was designed, it follows by
Proposition 3.20 that the non-N entries of R(!, D) indicate
strings that CD may generate to drive ! to a corresponding
state at the end of its turn; one of these strings is selected
by the designer of CD toward the implementation of CD

through Construction 2.11.
The next turn is again a turn of CA; the stable states that

! could reach at the end of this turn are characterised by
all non-N entries of row i of the product

R(!, A)R(!,D)R(!, A).

At the succeeding turn, CD acts again, and the stable states
that ! could reach at the end of the turn are characterised
by the non-N entries of row i of the product

R(!, A)R(!,D)R(!, A)R(!,D). (4.2)

And so on and on. Of these states, the state actually reached
by ! is determined by selections made in the design of the
two controllers CA and CD.

As ! has only n states, it is possible to characterise in
finite terms the states that ! could reach at the end of any
number of controller turns. To derive this characterisation,
we use the following matrix.

Definition 4.3: Let ! = (A, D, X, f, x0) be an asynchronous
trigger machine with the state set X = {x1, x2, . . . , xn} and
the matrices of stable transitions R(!, A) and R(!, D). The
compound matrix of stable transitions of ! is

R(!) :=
n−1∑

i=1

[(R(!, A)R(!,D))i−1R(!, A)

+ (R(!, A)R(!,D))i]. (4.4)

The compound skeleton matrix of ! is

Kij (!) :=
{

1 if Rij (!) ̸= N,

0 otherwise.
(4.5)

Example 4.6: The compound matrix of stable transitions
for the machine ! of Example 2.3 is given by

R(!) = R(!, A) + (R(!, A)R(!,D))

+ (R(!, A)R(!, D))R(!, A) + (R(!, A)R(!, D))2

+ (R(!, A)R(!, D))2R(!, A) + (R(!, A)R(!,D))3

+ (R(!, A)R(!, D))3R(!, A) + (R(!, A)R(!,D))4,

where R(!, A) and R(!, D) are given in Examples 3.10 and
3.16.

The significance of the compound skeleton matrix is as
follows.

Lemma 4.7: Let ! = (A, D, X, f, x0) be an asynchronous
trigger machine with the state set X = {x1, x2, . . . , xn},
the initial state x0 = xi, and the compound skeleton matrix
K(!). Assume that ! is operated in compliance with Rule
2.4 by two controllers CA and CD as depicted in Figure 1.
Then, the following are equivalent.

(i) There are controllers CA and CD for which the state
xj is the outcome of a succession of controller turns.

(ii) Kij(!) ̸= 0.

D
ow

nl
oa

de
d 

by
 [J

ac
ob

 H
am

m
er

] a
t 2

1:
36

 0
9 

Fe
br

ua
ry

 2
01

6 



International Journal of Control 205

Proof: Considering that x0 = xi, it follows by Proposition
3.14 and the opening discussion of Section 4.1 that all states
that could be stably reached at the end of an A-action turn are
characterised by the non-N entries of row i of the following
matrices: R(!, A) for the first A-action turn; R(!, A)R(!,
D)R(!, A) for the second A-action turn; and, generally,
(R(!, A)R(!, D))i − 1R(!, A) after the i-th A-action turn.
Considering that ! has only n states, every string of more
than n states must include a repetition. Counting the initial
state of !, the string x0, R(!, A), R(!, A)R(!, D)R(!,
A), . . . ,(R(!, A)R(!, D))i − 1R(!, A) yields a string of i +
1 stable states. Thus, for i > n − 1, this string of stable
states must include a repeating state. Hence, proceeding in
this string beyond i = n − 1 does not yield new states that
are stably reachable at the end of an A-action turn.

Analogously, states that could be stably reached at the
end of a D-action turn are characterised by the non-N en-
tries of the matrices (R(!, A)R(!, D))r, r = 1, 2. . . As
before, no new states are obtained for r > n − 1. In view of
Definition 4.3 of the compound skeleton matrix, our proof
concludes. !

We can characterise now the possible outcomes of the
control process of Figure 1.

Theorem 4.8: Let ! = (A, D, X, f, x0) be an asynchronous
trigger machine with state set X = {x1, x2, . . . , xn}, initial
state x0 = xi, and skeleton matrices K(!, A), K(!, D), and
K(!). Assume that ! is controlled in compliance with Rule
2.4 by two controllers CA and CD as depicted in Figure 1.
Then, the following are valid.

(i) There are controllers CA and CD that guide ! to a
terminal state at xj if and only if Kij(!) = 1, Kjj(!,
A) = 1, and Kjj(!, D) = 1.

(ii) There are controllers CA and CD that guide ! into
an infinite cycle if and only if there are integers
p ̸= q ∈ {1, 2, . . . , n} such that Kip(!) = 1, Kpq(!)
= 1, and Kqp(!) = 1.

Proof: (i) In order for the state xj to be a terminal state, xj

must be stably reachable from the initial state xi. According
to Lemma 4.7, the latter is valid if and only if Kij(!) =
1. Furthermore, in order for xj to be a terminal state, there
must be controllers CA and CD for which xj is a terminal
state. The statement follows then by Proposition 3.21.

(ii) By Lemma 4.7, the requirement Kip(!) = 1 is equiv-
alent to the existence of controllers CA and CD that induce
a transition from the initial state xi to the state xp. Further-
more, by the same lemma, the two equalities Kpq(!) =
1 and Kqp(!) = 1 are equivalent to the existence of con-
trollers that induce transitions from xp to xq and back from
xq to xp. As p ̸= q, these transitions create an infinite
cycle. !

By using Theorem 4.8(i), we can characterise all pos-
sible terminal states of the machine ! in the configuration
of Figure 1, as follows.

Corollary 4.9: Under the conditions of Theorem 4.8, let
.⊆X be the set of all possible terminal states of ! in the
control configuration of Figure 1, where the initial state of
! is xi. Then, the following are true.

(i) . = {xj ∈ X: Kij(!) = 1, Kjj(!, A) = 1, Kjj(!, D)
= 1.}

(ii) ! reaches a terminal state for all controllers CA

and CD if and only if xq ∈ . whenever Kiq(!) = 1.
(iii) There are controllers CA and CD that lead ! into

an infinite cycle if and only if Kiq(!) = 1 for some
xq ̸∈..

Recall that, in order for one of the controllers to pre-
vail, the machine ! must stably reach a target state of that
controller. By Rule 2.4, stably reached target states are al-
ways terminal states of ! in the control configuration of
Figure 1. Combining this with Corollary 4.9 yields the next
statement.

Corollary 4.10: Under the conditions of Theorem 4.8, the
following are valid.

(i) There are controllers CA and CD for which CA pre-
vails if and only if Kij(!) = 1 for some j ∈ TA.

(ii) Any controller CA prevails for any CD if and only if
j ∈ TA whenever Kij(!) = 1.

(iii) There are controllers CA and CD for which CD pre-
vails if and only if Kij(!) = 1 for some j ∈ TD.

(iv) Any controller CD prevails for any CA if and only if
j ∈ TD whenever Kij(!) = 1.

As can be seen, the compound skeleton matrix K(!)
characterises the potential performance of the closed-loop
machine of Figure 1. Note, however, that K(!) provides
information only about potential outcomes of the control
process; it does not provide the information necessary for
designing controllers CA and CD that achieve a particular
outcome. The design of appropriate controllers CA and CD

requires the corresponding matrices of stable transitions
R(!, A) and R(!, D), since these are the matrices that
furnish the input strings that CA and CD must generate
as input to ! in order to achieve a particular outcome.
Still, if one is interested preliminarily only in examining
the possible outcomes of the control process of Figure 1,
then the skeleton matrix is the preferred tool to use. In the
next subsection, we discuss a simple technique for deriving
the compound skeleton matrix K(!).

D
ow

nl
oa

de
d 

by
 [J

ac
ob

 H
am

m
er

] a
t 2

1:
36

 0
9 

Fe
br

ua
ry

 2
01

6 



206 J. Hammer

4.2 A simple computation of compound skeleton
matrices

We start by reviewing briefly the operations on skeleton
matrices introduced by Murphy et al. (2002, 2003). Let K
and K′ be two n × n skeleton matrices, namely, two matrices
of zeros and ones. The sum K + K′ is also an n × n skeleton
matrix, and it has the entries

(K + K ′)ij := max{Kij ,K
′
ij }, i, j = 1, 2, . . . , n.

(4.11)
The product KK′ is again an n × n skeleton matrix, and its
entries are

(KK ′)ij := max
q=1,2,...,n

{KiqK
′
qj }, i, j = 1, 2, . . . , n.

(4.12)
Under this product, powers of an n × n skeleton matrix K
are given by

K0 := I,

Kp := KKp−1, p = 1, 2, . . . ,

where I is the identity matrix of zeros and ones. Finally, for
an integer p > 0, the cumulative power K(p) of a skeleton
matrix K is

K (p) = K + K2 + · · · + Kp.

Now, let ! = (A, D, X, f, x0) be an asynchronous trigger
machine with the state set X = {x1, x2, . . . , xn}. Using the
two skeleton matrices K(!, A) and K(!, D) of (3.12) and
(3.18), it can be readily seen that the compound skeleton
matrix of Definition 4.3 is equal to

K(!) =
n−1∑

i=1

{(K(!, A)K(!,D))i−1K(!, A)

+ (K(!, A)K(!,D))i} (4.13)

The calculation of the compound skeleton matrix through
this formula is somewhat simpler than its derivation from
the compound matrix of stable transitions in (4.5), since the
present calculation does not require the derivation of the
compound matrix of stable transitions R(!). The matrix
K(!) can be utilised in Theorem 4.8 to determine possible
outcomes of the control process of Figure 1. We emphasise
again that the matrices of stable transitions are needed for
implementing appropriate controllers, since these matrices
provide the strings used in Construction 2.11 to build the
controllers.

5. States of certainty

In this section, we examine conditions under which the
outcome of the control process of Figure 1 becomes

pre-determined. Specifically, we characterise states of
the controlled machine ! from which one controller can
always prevail, irrespective of actions taken by the other
controller (if it employs an appropriate control strategy).
We also consider the dual problem of characterising all
states of ! from which one controller can always block the
other controller from prevailing, by using an appropriate
control strategy. First, some terminology.

Definition 5.1: Let ! = (A, D, X, f, x0) be an asynchronous
trigger machine operated by the two controllers CA and CD

of Figure 1 in compliance with Rule 2.4. The controller
CA can prevail with certainty from a state x of ! if CA

can always prevail after starting a turn at x, irrespective of
actions taken by CD. Similarly, CD can prevail with certainty
from a state x of ! if CD can always prevail after starting a
turn at x, irrespective of actions taken by CA.

States from which one of the controllers can prevail
with certainty are states of the controlled machine ! from
which the outcome of the control process of Figure 1 is
pre-ordained, irrespective of actions taken by the opposing
controller. This assumes, of course, that the controller that
can prevail with certainty employs an appropriate control
strategy; the point is that such a strategy always exists for a
controller that can prevail with certainty.

To characterise states from which a controller can pre-
vail with certainty, we use the fact that, when a controller
can prevail with certainty, the end of the control process is
known – the controlled machine ! reaches a target state
of the prevailing controller. Using this fact, we proceed in
a step-by-step manner backwards, characterising all states
along the way from which the controller can prevail with
certainty. Let’s examine first the case of the controller CA.
Clearly, in order for CA to prevail in the current turn, it must
drive ! to a member of the target set TA in this turn. Thus,
CA must have started its turn at a state of ! from which a
member of TA is stably reachable in one turn of A-action.
Going back one turn, this means that the previous turn – a
D-action turn – must have started at a state of ! from which
all states that can be stably reached in one turn of D-action
are states from which CA can stably reach a member of TA

in one turn; and so forth, going back controller turn by con-
troller turn. To describe this process formally, we introduce
some notation.

5.1 Vector representations of states

Consider the asynchronous trigger machine ! = (A, D, X,
f, x0) with the state set X = {x1, x2, . . . , xn} and the target
sets TA and TD. Let {0, 1}n be the set of all n-dimensional
column vectors with entries of 0 or 1, and let χ : X →
{0, 1}n be the function that assigns to a state xj ∈ X the
column vector χ (xj) = (0, 0, . . . , 0, 1, 0, . . . , 0)T, where 1
appears in position j and zeros everywhere else, and where
T denotes the transpose. More generally, a set of states

D
ow

nl
oa

de
d 

by
 [J

ac
ob

 H
am

m
er

] a
t 2

1:
36

 0
9 

Fe
br

ua
ry

 2
01

6 



International Journal of Control 207

S = {xi1 , xi2 , . . . , xiq } ⊆ X is represented by the column
vector χ (S) ∈ {0, 1}n that has entries of 1 in positions
i1, i2, . . . , iq and zeros everywhere else; the zero vector
corresponds to the empty set of states. This turns χ into
a set isomorphism. In our ensuing discussion, it will be
convenient to make no distinction between the set S and the
vector χ (S), in line with Notation 1.5(iii).

Given a vector t ∈ {0, 1}n and an n × n skeleton matrix
K, we define a product analogous to Equation (4.12) to yield
a column vector t ′ = (t ′1, t

′
2, . . . , t

′
n)T ∈ {0, 1}n, where

t ′i := max
q=1,2,...,n

{Kiqtq}, i = 1, 2, . . . , n.

The addition of two vectors ϑ = (ϑ1, . . . ,ϑn)T ,ϑ ′ =
(ϑ ′

1, . . . ,ϑ
′
n)T ∈ {0, 1}n is defined in analogy to (4.11) by

(ϑ + ϑ ′)i := max{ϑi ,ϑ
′
i }, i = 1, 2, . . . , n. (5.2)

Now, let S(j) ⊆ X be the set of all states of ! from which
the state xj is stably reachable in one turn of A-action. By
the definition of the A-skeleton matrix K(!, A), it follows
that S(j) is characterised by all entries of 1 in column j of
K(!, A); in other words, χ (S(j)) = K(!, A)χ (xj). A slight
reflection shows that the last expression can be generalised
into the following.

Proposition 5.3: Let ! = (A, D, X, f, x0) be an asyn-
chronous trigger machine with the state set X = {x1, . . . ,
xn}, the A-skeleton matrix K(!, A), and the D-skeleton ma-
trix K(!, D). Then, the following are true for a set of states
S ⊆ X:

(i) The set of all states of ! from which a member
of S is stably reachable in one turn of A-action is
characterised by the vector K(!, A)χ (S).

(ii) The set of all states of ! from which a member
of S is stably reachable in one turn of D-action is
characterised by the vector K(!, D)χ (S).

Considering the target set TA, it follows by Proposition
5.3 that the set of all states of ! from which CA can prevail
in one turn is characterised by the column vector

v1
A := K(!, A)χ (TA).

Next, we introduce an operation of complementation:
the complement vc of a column vector v ∈ {0, 1}n is obtained
by replacing in v every 0 by 1 and every 1 by 0. Then, the
vector (v1

A)c characterises the set of all states of ! from
which a member of TA is not stably reachable in one turn
of A-action. Consequently, the vector

θ1
A := K(!,D)(v1

A)c

characterises all states of ! from which one turn of D-action
can prevent ! from entering the set v1

A. Thus, θ1
A charac-

terises the set of all states of ! from which the defensive
controller CD can prevent the adversarial controller CA from
prevailing in one subsequent turn. The complement

v2
A := (θ1

A)c = (K(!,D)(v1
A)c)c

therefore characterises all states of ! from which D-action
cannot block the controller CA from prevailing in one sub-
sequent turn. In other words, if, at the start of a D-turn,
! is in a state that corresponds to an entry of 1 in v2

A,
then CA can ultimately prevail, irrespective of actions taken
by CD.

Continuing in this manner, we progress backward from
the target set TA to characterise all states from which the
controller CA can ultimately prevail, irrespective of D-
action:

v0
A := χ (TA)

v1
A := K(!, A)χ (TA)

vi
A :=

[
K(!,D)(vi−1

A )c
]c

for i = 2, 4, 6, . . .

vi
A := K(!, A)vi−1

A for i = 3, 5, 7, . . .

Finally, using the addition operation (5.2), define the vector

vA :=
n−1∑

i=0

vi
A. (5.4)

Then, the following is true.

Theorem 5.5: Let ! = (A, D, X, f, x0) be an asynchronous
trigger machine with state set X = {x1, x2, . . . , xn} and
skeleton matrices K(!, A) and K(!, D). Assume that !

is operated by two controllers CA and CD according to
the configuration of Figure 1 and in compliance with Rule
2.4. Then, the set of all states of ! from which CA can
prevail with certainty is characterised by the vector vA

of (5.4).

Before proving Theorem 5.5, we provide an example.

Example 5.6: Referring to the machine ! of Example 2.3
and to the results of Examples 3.13 and 3.19, we obtain

χ (TA) =

⎛

⎜⎜⎜⎜⎝

0
0
1
0
0

⎞

⎟⎟⎟⎟⎠
, v1

A =

⎛

⎜⎜⎜⎜⎝

0
1
1
0
0

⎞

⎟⎟⎟⎟⎠
, v2

A =

⎛

⎜⎜⎜⎜⎝

0
0
1
0
0

⎞

⎟⎟⎟⎟⎠
,

v3
A =

⎛

⎜⎜⎜⎜⎝

0
1
1
0
0

⎞

⎟⎟⎟⎟⎠
, v4

A =

⎛

⎜⎜⎜⎜⎝

0
0
1
0
0

⎞

⎟⎟⎟⎟⎠
.

D
ow

nl
oa

de
d 

by
 [J

ac
ob

 H
am

m
er

] a
t 2

1:
36

 0
9 

Fe
br

ua
ry

 2
01

6 



208 J. Hammer

This yields

vA =

⎛

⎜⎜⎜⎜⎝

0
1
1
0
0

⎞

⎟⎟⎟⎟⎠
,

which means that, in this case, the adversarial controller
prevails with certainty from the states x2 and x3.

Proof (of Theorem 5.5): We characterise all initial states
x0 of ! from which CA can prevail with certainty. Now, if x0

∈ TA, then CA prevails with no controller action. Otherwise,
by Rule 2.4, when CA prevails, it is the last one to act. By
the discussion leading to (5.4), the vector vA characterises
all states from which CA can prevail with certainty within
zero to n − 1 controller turns. Thus, it remains only to show
that, if CA can prevail with certainty in m ≥ 0 controller
turns, then it can also prevail with certainty within n − 1 or
fewer controller turns.

To this end, assume that, for a state x0 ∈ X, the con-
troller CA can prevail with certainty in m ≥ 0 controller
turns, where m > n − 1. Let x0, x1, x2, . . . , xm be the states
reached by ! at the end of controller turns 0, 1, 2, . . . ,
m, respectively, on its way to a member xm ∈ TA. As this
string includes m + 1 > n states, while ! has only n
states, there must be repeating states in the string, say the
states xi1 = xi2 , i2 > i1. The string of states has then the
form x0, x1, . . . , xi1−1,xi1 , xi1+1, . . . , xi2−1, xi2 , xi2+1,. . . ,
xm. Note that xi1 and xi2 must be the outcome of a turn
by the same controller, since otherwise xi2 is a start of a
turn of the same controller whose turn ended at xi1 = xi2

and hence, according to Rule 2.4, that controller would have
continued to xi2+1 without stopping at xi1 = xi2 . Thus, we
can delete the segment xi1 , xi1+1, . . . , xi2−1 to obtain the
shorter string x, x1, . . . , xi1−1, xi2 ,xi2+1, . . . , xm that repre-
sents m − (i2 − i1) controller turns. Repeating this process,
we can shorten the string to n − 1 or fewer controller turns,
and our proof concludes. !

In order for the controller CA to prevail under the con-
ditions of Theorem 5.5, it is necessary for CA to employ an
appropriate control strategy. The theorem states that such
a control strategy does exist whenever the controlled ma-
chine ! finds itself in a state of vA at the start of a CA turn.
The strings that CA must generate as input to ! in response
to actions by CD are given in the appropriate entries of the
matrix of A-stable transitions R(!, A). These strings are
then used in Construction 2.11 to build CA.

Obviously, from a defensive perspective, it is critical for
CD to avoid taking ! to a state from which CA can prevail
with certainty. Thus, CD must endeavour to constrain !

to states characterised by the complement (vA)c. A slight
reflection shows that this is possible if and only if the initial
state x0 of ! is not itself a member of vA, as the following

statement indicates. Blocking CA from prevailing would,
of course, require appropriate design of CD. The point of
the next statement is that such design is possible under the
listed conditions.

Corollary 5.7: Under the conditions and notation of The-
orem 5.5, the following two statements are equivalent.

(i) CD can block CA from prevailing.
(ii) The initial condition x0 of ! corresponds to an

entry of 0 in vA.

Completely analogous results can be obtained for the
defensive controller CD by interchanging A and D in Theo-
rem 5.5 and Corollary 5.7. To this end, define the quantities

v0
D := χ (TD)

v1
D := K(!,D)χ (TD)

vi
D := (K(!, A)(vi−1

D )c)c for i = 2, 4, 6, . . .

vi
D := K(!,D)vi−1

D for i = 3, 5, 7, . . .

vD :=
n−1∑

i=0

vi
D. (5.8)

Theorem 5.9: Let ! = (A, D, X, f, x0) be an asynchronous
trigger machine with state set X = {x1, x2, . . . , xn} and
skeleton matrices K(!, A) and K(!, D). Assume that ! is
operated in compliance with Rule 2.4 by two controllers CA

and CD, as depicted in Figure 1. Then, the set of all states of
! from which CD can prevail with certainty is characterised
by the vector vD of (5.8).

Once CD finds itself at the beginning of its turn in a state
that corresponds to an entry of 1 in vD, no action by CA can
prevent CD from prevailing, if CD is properly designed.

6. Conclusion

In this paper, we applied control theoretic techniques toward
the resolution of a common predicament of modern tech-
nology – the omnipresence of adversarial software agents
that are pre-programmed to harm critical computing sys-
tems and the infrastructure they manage. We concentrated
on asynchronous sequential machines, since the prevalence
of such machines is increasing quickly, as part of the quest
for higher computing speed.

A pre-programmed adversarial agent can be viewed as
an automatic controller acting on an underlying machine
!, in an attempt to take ! into a set of ‘harmful’ states –
the adversarial target set TA. To counteract the actions of the
controller CA, a defensive automatic controller CD is con-
nected to !, with the objective of taking ! into a ‘benefi-
cial’ set of states – the defensive target set TD. The resulting
control configuration is depicted in Figure 1.

D
ow

nl
oa

de
d 

by
 [J

ac
ob

 H
am

m
er

] a
t 2

1:
36

 0
9 

Fe
br

ua
ry

 2
01

6 



International Journal of Control 209

As one might expect, the ability to counteract action of
the adversarial controller depends on certain reachability
properties of the protected machine !. These reachabil-
ity properties can be most conveniently expressed in terms
of the two skeleton matrices: the A-action skeleton matrix
K(!, A), which describes the stable transitions the adver-
sarial controller can induce in !; and the D-action skeleton
matrix K(!, D), which describes the stable transitions the
defensive controller can induce in !. Being matrices of
zeros and ones, these matrices are easy to manipulate; they
form effective tools for examining the possible outcome of
the control process. In particular, they allow us to charac-
terise states of certainty, namely, states from which the out-
come of the control process is preordained (Theorems 5.5
and 5.9).

Once the possible outcomes of the control process have
been determined, the next task is to design controllers that
implement a desirable outcome. As the controllers work
by applying input strings to the underlying machine !, we
need tools that reveal the appropriate input strings. Such
tools are provided by the matrices of stable transitions R(!,
A) and R(!, D). Entries of these matrices are used by the
designer of the adversarial controller CA to determine the
input strings that CA must produce in order to achieve its ad-
versarial objectives. Similarly, the designer of the defensive
controller CD uses entries of these matrices to determine the
input strings that CD must apply to ! in order to achieve its
defensive objectives. These strings are then used in Con-
struction 2.11 to implement the two controllers.

Disclosure statement
No potential conflict of interest was reported by the authors.

References
Barrett, G., & Lafortune, S. (1998). Bisimulation, the supervisory

control problem, and strong model matching for finite state
machines. Discrete Event Systems: Theory and Applications,
8(4), 377–429.

Di Benedetto, M.D., Sangiovanni-Vincentelli, A., & Villa, T.
(2001). Model matching for finite-state machines. IEEE
Transactions on Automatic Control, 46(11), 1726–1743.

Geng, X., & Hammer, J. (2005). Input/output control of asyn-
chronous sequential machines. IEEE Transactions on Auto-
matic Control, 50(12), 1956–1970.

Hammer, J. (1994, December). On some control problems in
molecular biology. Proceedings of the IEEE conference on
decision and control, Lake Buena Vista, FL (pp. 4098–4103).

Hammer, J. (1996). On corrective control of sequential machines.
International Journal of Control, 65(2), 249–276.

Kohavi, Z. (1978). Switching and finite automata theory (2nd ed.).
New York, NY: McGraw-Hill.

Kumar, R., Nelvagal, S., & Marcus, S.I. (1997). A discrete event
systems approach for protocol conversion. Discrete Event Sys-
tems: Theory and Applications, 7(3), 295–315.

Martin, A.J., & Nyström, M. (2006). Asynchronous techniques for
system-on-chip design. Proceedings of IEEE, 94(6), 1089–
1120.

Murphy, T.E., Geng, X., & Hammer, J. (2002, July). Controlling
races in asynchronous sequential machines. Proceeding of the
IFAC World congress, Barcelona.

Murphy, T.E., Geng, X., & Hammer, J. (2003). On the control
of asynchronous machines with races. IEEE Transactions on
Automatic Control, 48(6), 1073–1081.

Peng, J., & Hammer, J. (2010). Input/output control of asyn-
chronous sequential machines with races. International Jour-
nal of Control, 83(1), 125–144.

Peng, J., & Hammer, J. (2012). Bursts and output feedback con-
trol of non-deterministic asynchronous sequential machines.
European Journal of Control, 18(3), 286–300.

Sparsø, J., & Furber, S. (2001). Principles of asynchronous circuit
design – a systems perspective. Dordrecht: Kluwer Academic.

Szor, P. (2005). The art of computer virus research and defense.
New Jersy, NJ: Addison-Wesley.

Thistle, J.G., & Wonham, W.M. (1994). Control of infinite behav-
ior of finite automata. SIAM Journal on Control and Opti-
mization, 32(4), 1075–1097.

Tinder, R.F. (2009). Asynchronous sequential machine design and
analysis. San Francisco, CA: Morgan & Claypool.

Venkatraman, N., & Hammer, J. (2006a). On the control of asyn-
chronous sequential machines with infinite cycles. Interna-
tional Journal of Control, 79(7), 764–785.

Venkatraman, N., & Hammer, J. (2006b). Stable realizations of
asynchronous sequential machines with infinite cycles. Pro-
ceedings of 2006 Asian control conference, Bali, Indonesia
(pp. 45–51).

Yang, J.–M. (2011). Model matching inclusion for input/state
asynchronous sequential machines. Automatica, 47(3), 597–
602.

Yang, J.-M., & Hammer, J. (2008). State feedback control of asyn-
chronous sequential machines with adversarial inputs. Inter-
national Journal of Control, 81(12), 1910–1929.

Yang, J.-M., & Hammer, J. (2010). Asynchronous sequential ma-
chines with adversarial intervention: The use of bursts. Inter-
national Journal of Control, 83(5), 956–969.

Yang, J.-M., & Kwak, S.W. (2010). Realizing fault-tolerant asyn-
chronous sequential machines using corrective control. IEEE
Transactions on Control Systems Technology, 18(6), 1457–
1463.

Yevtushenko, N., Villa, T., Brayton, R.K., Petrenko, A., &
Sangiovanni-Vincentelli, A.L. (2008). Compositionally pro-
gressive solutions of synchronous FSM equations. Discrete
Event Systems: Theory and Applications, 18(4), 51–89.

D
ow

nl
oa

de
d 

by
 [J

ac
ob

 H
am

m
er

] a
t 2

1:
36

 0
9 

Fe
br

ua
ry

 2
01

6 


	Abstract
	1. Introduction
	1.1. Fundamental mode operation
	1.2. Asynchronous trigger machines
	1.3. Asynchronous trigger machines with two inputs
	1.4. Fundamental mode operation and trigger machines
	1.5. Controller turns
	1.6. General background

	2. Basic notions
	2.1. State weights
	2.2. The local sink

	3. Matrix representations
	3.1. Strings of pairs
	3.2. The matrix of stable transitions

	4. Successive controller turns
	4.1. The compound matrix of stable transitions
	4.2. A simple computation of compound skeleton matrices

	5. States of certainty
	5.1. Vector representations of states

	6. Conclusion
	Disclosure statement
	References

