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Abstract— The control of asynchronous sequential machines
by static state feedback is considered with the objective of
matching a prescribed model. A necessary and sufficient con-
dition for model matching by static state feedback is derived.
This condition is based on counting the number of members
of certain sets; it is expressed in terms of features of a matrix
derived from the given recursion functions of the controlled
machine and the desired model.

I. INTRODUCTION

Asynchronous sequential machines are dynamic automata
that operate without a clock. They form the clockless logic
components of high speed computer systems as well as the
foundation for the mathematical modeling of signaling chains
in molecular biology ([1]). In [2], an effort was initiated
to develop control theoretic techniques that help overcome
deficiencies in the operation of asynchronous sequential ma-
chines. These techniques are based on the use of a controller
that is connected to the deficient machine to regulate, rectify,
and amend its operation. They are often more efficient than
replacing a deficient machine by a redesigned one. Moreover,
in many cases, such as in the case of defective biological
signaling chains or remote computing systems, replacement
of a defective machine is not an option.

Along this line of work, control theoretic techniques were
developed to eliminate the adverse effects of critical races
on asynchronous machines ([2], [3] and [4]); to design
input/output controllers for asynchronous machines with no
state access ([5]); to overcome the effects of infinite cycles
in asynchronous machines ([6]); to counteract the effects
of adversarial interventions on asynchronous machines ([7]
and [8]); and to design adaptive controllers for asynchronous
machines that are incompletely specified ([7] and [12]). An
analysis of several practical applications of controllers for
asynchronous machines can be found in [10] and [11].

The studies mentioned in the previous paragraph inves-
tigate the existence and the design of dynamic controllers,
namely, controllers formed by asynchronous machines that
include memory elements. The present note concentrates on
the existence and the design of static controllers, namely,
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controllers formed by logical gates with no memory ele-
ments. Specifically, we concentrate on the existence and the
design of static state feedback controllers, with the main
objective of deriving controllers that achieve model match-
ing. Although the conditions under which model matching
can be achieved with static state feedback controllers are
somewhat more stringent than the conditions under which
model matching can be achieved with dynamic feedback
controllers, the use of static controllers is often preferable
when possible, as static controllers are simpler to implement
and may offer lower cost and higher reliability. In section
IV, we derive a necessary and sufficient condition for the
existence of static state feedback controllers that solve a
specified model matching problem. This section also presents
a design methodology for such controllers, whenever they
exist.

The existence conditions and the design methodology
presented in section IV are based on a matrix which, in qual-
itative terms, distills certain common reachability properties
shared by the controlled machine and the desired model.
This matrix can be derived directly from data given about
the two machines. The basic operation involved in checking
the existence conditions centers on counting the number of
members of certain sets. A detailed example is provided in
section V to demonstrate the results.

II. PRELIMINARIES

An input/state asynchronous machine Σ is represented by
a triplet Σ = (A,X , f ), where A is the input set, X is the state
set, and f : X×A→X is the recursion function. The machine
operates through the recursion

xk+1 = f (xk,uk),k = 0,1,2, ...

In general, f is a partial function defined only on a subset of
X ×A. A pair (x,u) ∈ X ×A at which f is defined is called
a valid pair. A valid pair (x,u) is a stable combination if
f (x,u) = x, namely, if it is a stationary point of f ; otherwise,
(x,u) is a transient combination. The machine Σ rests in a
stable combination (x,u) until the input character is changed
to another character, say to the character v. Upon this change,
Σ may engage in a chain of transitions. Assuming that Σ has
no infinite cycles, this chain of transitions ends at a stable
state. The state x′ of Σ at the end of the transition chain
is called the next stable state of the pair (x,v). It defines
the stable recursion function s : X×A→ X of Σ through the
relation s(x,v) := x′, namely, the stable recursion function
provides the next stable state of a state/input pair. Using
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s as the recursion function yields the stable state machine
Σ|s = (A,X ,s) induced by Σ.

Transitions through transient combinations of an asyn-
chronous machine are extremely quick, occurring ideally
in zero time. As a result, users observing an asynchronous
machine Σ see, in fact, the stable state machine Σ|s.

As mentioned, our discussion concentrates on static state
feedback. A static state feedback configuration is depicted
in Figure 1; the controller is represented by a function ϕ :
X×A→ A that generates the current input character uk of Σ

from the current state xk of Σ and the current external input
character vk according to

uk = ϕ(xk,vk),k = 0,1,2, ...

The configuration generates the closed loop machine Σϕ

given by

Σϕ : xk+1 = f (xk,ϕ(xk,vk)),k = 0,1, ...

Fig. 1. Static state feedback.

Our objective is to investigate the model matching prob-
lem. Given a stable-state machine model Σ′ = (A,X ,s′), we
seek a static state feedback function ϕ : X×A→ A for which

Σϕ = Σ
′. (1)

The equality (1) refers to the stable state machines induced
by Σϕ and Σ′ since, as indicated earlier, users are aware only
of stable transitions. In section IV, we provide a necessary
and sufficient condition for the existence of such feedback
functions as well as a process of their construction, whenever
they exist.

Due to the speed of transients and the lack of synchrony,
asynchronous machines are usually operated in fundamental
mode (e.g., [13]), where changes to the input are allowed
only when the machine is in a stable combination. This
prevents an unpredictable response that may arise when the
input change occurs at an unpredictable stage of a chain
of transients. Thus, a string v1v2 · · ·vk of input characters
must be applied to Σ in a step-by-step manner, where the
next input character is applied only after the machine has
reached a stable state. Then, the final stable state reached is
s(x,v1v2 · · ·vk) := s(s(s(x,v1),v2) · · ·vk).

To apply the notion of fundamental mode operation to
a static state feedback configuration around the machine Σ,
consider a string of states x1x2 · · ·xm,m> 2, that form a chain
of transient transitions from a stable combination with x1 to
a stable combination with xm. If the feedback function ϕ

changes value at an intermediate state in this transition chain,

say, at x2, we are faced with the uncertainty of whether the
change in ϕ occurs before or after the transition of Σ to x3.
This creates a potential uncertainty and violates fundamental
mode operation. Consequently, ϕ must maintain the same
value at all intermediate states in a transition chain; it can
change value only upon reaching a stable state, as follows.

Proposition 1: Let Σ = (A,X , f ) be an input/state asyn-
chronous machine and let ϕ : X×A→ A be a static feedback
function as shown in Figure 1. Then, the following two
statements are equivalent.

(i) The closed-loop system Σϕ operates in fundamental
mode.

(ii) At every valid pair (x,v) of Σϕ , the function ϕ satis-
fies ϕ(x,v) = ϕ( f (x,ϕ(x,v)),v) whenever the next step
( f (x,ϕ(x,v)),ϕ(x,v)) is a transient combination of Σ. �

When the next step ( f (x,ϕ(x,v)),ϕ(x,v)) forms a
stable combination, there is no restriction on the
value ϕ( f (x,ϕ(x,v)),v). On the other hand, when
( f (x,ϕ(x,v)),ϕ(x,v)) is a transient combination, then
ϕ must have the same value at the two pairs (x,v) and
( f (x,ϕ(x,v)),v); otherwise, the control input u of Σ will
change during a transient, violating fundamental mode
operation. Proposition 1(ii) restricts the class of feedback
functions ϕ that can be used for Σ.

III. REACHABILITY MATRICES

Let Σ = (A,X , f ) be an asynchronous machine with the
stable recursion function s and, for a set A, denote by
A+ the set of all strings of members of A. A state x′ is
stably reachable from a state x if there is an input string
t ∈ A+ such that x′ = s(x, t) ([2]). Stable reachability from
x to x′ is necessary and sufficient for the existence of a
dynamic feedback controller that steers Σ from x to x′ in
fundamental mode operation ([2], [5], [7]). However, the
situation with static feedback is different, as one must align
with the requirement of Proposition 1; here, in addition
to the endpoints of a stable transition, the transient states
encountered along the transition must also be considered.
The feedback function ϕ must maintain the same value on
all transient states of a one-step stable transition.

Let (x,v) ∈ X × A be a valid pair of the machine Σ =
(A,X , f ), and let x1 = f (x,v),x2 = f (x1,v), · · · ,xi = f (xi,v)
be the chain of transitions from the pair (x,v) to the next
stable state xi = s(x,v), i ≥ 1. Let N be a character not in
A or X . Using the foregoing notation, define a function τ :
X ×A→ (X ×A)+ ∪N : (x,v) 7→ τ(x,v) that generates the
string of all state/input pairs traversed by Σ as it undergoes
the stable transition from (x,v) to s(x,v):

τ(x,v) =

{
(x,v)(x1,v) · · ·(xi,v) if (x,v) is valid,
N otherwise.

(2)

We refer to τ as the transition chain function of Σ.
It is sometimes convenient to split the chain of pairs of (2)

into a set of pairs by using the splitting operator ∆ defined
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for a string of pairs a = (x,v)(x1,v) · · ·(xi,v), i≥ 1, by

∆(a) :=


{(x,v),(x1,v), · · · ,(xi,v)} if i≥ 1;
{(x,v)} if a = (x,v);
∅ if a = N.

In addition, we define the operator ∆− that truncates the last
pair from the outcome of ∆:

∆
−(a) :=


{(x,v),(x1,v), · · · ,(xi−1,v)} if i > 1;
{(x,v)} if i = 1;
∅ if a = (x,v) or a = N.

Next, recalling the stable recursion function s of Σ, let
s[x×A] be the set of all next stable states of x, namely,

s[x×A] := {x′ ∈ X : x′ = s(x,a) for a character a ∈ A}.

Definition 1: Let Σ be an asynchronous machine with
state set X = {x1, . . . ,xn} and transition chain function τ .
The one-step chain reachability matrix ρ+(Σ) is an n× n
matrix whose (i, j) entry, i, j = 1,2, ...,n, is

ρ
+
i j (Σ) =


{∆(τ(xi,v)) : v ∈ A and s(xi,v) = x j}

if x j ∈ s[xi×A];
N otherwise.

Similarly, the truncated one-step chain reachability matrix
ρ−(Σ) is

ρ
−
i j
(Σ) =


{∆−(τ(xi,v)) : v ∈ A and s(xi,v) = x j}

if x j ∈ s[xi×A];
N otherwise.

�

As we can see, ρ
+
i j (Σ) consists of sets of pairs; each such set

of pairs includes all state/input pairs encountered in a one-
step stable transition from xi to x j. The entry ρ−

i j
(Σ) is ob-

tained from ρ
+
i j (Σ) by removing the last stable combination

from each member. Clearly, for i 6= j, we have ρ
+
i j (Σ) 6= N

and ρ
−
i j (Σ) 6= N if and only if there is a one-step stable

transition from xi to x j.
We turn now to the question of when stable transitions

can be implemented by a static state feedback controller.
Denote by ΠX : X × A → X : ΠX (x,a) 7→ x the projection
that extracts the state x from a state/input pair (x,a); and by
ΠA : X ×A→ A : ΠA(x,a) 7→ a the projection that extracts
the input character a from (x,a). We expand the domain of
ΠX and ΠA to (X×A)∪N by setting ΠX N = ΠAN =∅.

Definition 2: Let S ⊆ (X × A) ∪ N be a set that may
include state/input pairs and the character N. Then, S is an
implementable set if the following is true for all members
α,α ′ ∈ S: if ΠAα 6= ΠAα ′, then also ΠX α 6= ΠX α ′. �
When S⊆ (X ×A)∪N is an implementable set, we can use
the members of S to define a function φ : X → A by setting
φ(x) := a for every pair (x,a) ∈ S. On the other hand, when
S is not an implementable set, such a function does not exist,
since then a single member of X is assigned to two or more
different characters of A. This proves the following.

Proposition 2: Let S ⊆ (X ×A)∪N be a nonempty set.
Then, there is a function φ : X → A such that (x,φ(x)) ∈ S
for all x ∈ΠX S if and only if S is an implementable set. �
Implementable sets play a critical role in our discussion;
they form the foundation for characterizing the existence of
static feedback functions. A slight reflection shows that the
following is true, where #S denotes the cardinality of a set
S and ‘\’ denotes set difference.

Proposition 3: The union S ∪ S′ of two implementable
sets is an implementable set if and only if #[(S∩S′)\N] =
#(ΠX S∩ΠX S′). �
The condition of Proposition 3 leads us to a new operation
between compatible sets of pairs, which combines them
whenever the outcome is an implementable set; otherwise,
it generates the character N.

Definition 3: The compatible union S t S′ of two sets
S,S′ ⊆ (X×A)∪N is given by

StS′ :=


N if S = N;
N if S′ = N;
N if #[(S∩S′)\N] 6= #(ΠX S∩ΠX S′);
S∪S′ otherwise.

�

The following operation turns two sets S1,S2 ⊆ (X ×A)∪N
into a (non-ordered) list of two members:

S1⊕S2 :=


{S1,S2} if S1 6= N and S2 6= N;
S1 if S2 = N;
S2 if S1 = N.

The compatible union of two lists {S1,S2, ...,Sm} and
{S′1,S′2, ...,S′m′} of subsets of (X × A) ∪ N is the list of
compatible unions of all combinations of two members, one
from each list:

{S1,S2, ...,Sm}t{S′1,S′2, ...,S′m′} :=
⊕

i=1,...,m,
j=1,...,m′

SitS′j.

For lists of implementable sets, every member of
{S1,S2, ...,Sm} t {S′1,S′2, ...,S′m′} is an implementable set,
unless the result of the entire operation is N.

Using the foregoing operations, we can define an operation
akin to matrix multiplication among matrices whose entries
are lists of implementable sets or N. Let B and C be two
such n×n matrices; the product BC is also an n×n matrix
whose (i, j) entry, i, j ∈ {1,2, ...,n}, is

(BC)i j :=
{
{Bi1tC1 j}⊕ ·· ·⊕{BintCn j}

}
. (3)

Using the matrix product, we can define "powers" of the
one-step chain reachability matrix by setting

ρ p(Σ) := ρ+(Σ) for p = 1,
ρ p(Σ) := (ρ−(Σ))p−1ρ+(Σ) for p≥ 2. (4)

For notational purposes, it is convenient to define the
zero power of ρ(Σ) as a matrix that includes all stable
combinations of Σ. Let σi ⊆ {xi}×A be the set of all stable
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combinations of the state xi. Then, the n× n matrix ρ0(Σ)
has the entries:

ρ
0
i j(Σ) :=

{
σi if j = i,
N else,

i, j ∈ {1, . . . ,n}.

Next, the sum B⊕C of the two n×n matrices B,C is akin
to matrix addition and yields an n×n matrix whose entries
are lists of implementable sets or N:

(B⊕C)i j := Bi j⊕Ci j, i, j ∈ {1, . . . ,n}.

Definition 4: Let Σ be an asynchronous machine with n
states. The chain reachability matrix ρ(Σ) is

ρ(Σ) :=
⊕

p=0,1,...,n−1

ρ
p(Σ),

where ρ p(Σ) is given by (4). �
Note that, for a machine with n states x1,x2, ...,xn, the sum
in Definition 4 goes only up to step n−1. The next statement
points out the significance of the chain reachability matrix:
the entry ρi j(Σ) includes all stable transitions from xi to x j

that can be implemented by a static state feedback controller.
Theorem 1: Let Σ be an asynchronous machine with state

set X = {x1, . . . ,xn}. Then, the following two statements are
equivalent.
(i) ρi j(Σ) 6= N.
(ii) There is a state feedback function φ : X → A for which

Σφ has a stable transition from xi to x j in fundamental
mode operation.

Proof: (Sketch) First, assume that (i) is valid. Then,
ρi j(Σ) includes a nonempty implementable set S ⊆ X ×A,
say S ∈ ρ

p
i j(Σ) for some 0 ≤ p ≤ n− 1. By Proposition 2,

there is a partial function φ : X → A that satisfies

S = {(x,φ(x)) : x ∈ΠX S}.

If p = 0 or 1, then φ induces a stable combination or a
one-step stable transition from xi to x j. Further, consider the
case where 2 ≤ p ≤ n− 1. Then, in view of (3)), the set
S originates from a string of p consecutive one-step stable
transition chains of Σ, say the transitions

(x1,1,v1),(x1,2,v1), · · · ,(x1,k1−1,v1),
(x2,1,v2),(x2,2,v2), · · · ,(x1,k1−1,v2),

...
(xp−1,1,vp−1),(xp−1,2,vp−1), · · · ,(xp−1,kp−1,vp−1),

(xp,1,vp),(xp,2,vp), · · · ,(xp,kp ,vp),

(5)

where v` is the (constant) input character of the `−th one
step stable transition in this string of transitions, and k` is
the number of states traversed by Σ in this step. The last
step, i.e., ` = p, ends at the stable combination reached at
the target state x j. By (5), the function φ is given by

φ(xa,b) = va,b = 1,2, ...,(ka−1),a = 1,2, ..., p,

φ(xp,kp) = vp.

Note that, for a ∈ {1, . . . , p−1}, the function φ changes its
value from va to va+1 at the state xa,ka = xa+1,1; this change,

which occurs at a stable state, starts the next one-step stable
transition in our chain. As this change occurs at a stable state
of Σ, fundamental mode operation is preserved by Proposi-
tion 1. At the last state xp, the function φ maintains the value
vp, thus keeping Σ in the stable combination (xp,kp ,vp). In
this way, the closed-loop system Σφ moves through the entire
string of consecutive transitions (5), going from the state x1,1
to the state xp,kp and resting at the last stable combination
(xp,kp ,vp). Hence, φ induces the required stable transition
without violating fundamental mode operation, proving that
(i) implies (ii).

Conversely, assume that (ii) is valid. Then, there must be
a string of stable transitions that takes Σ from the state xi to
the state x j. Using an argument analogous to the one used
in [2], it follows that, if x j is stably reachable from xi, it can
be so reached in n− 1 or fewer stable one-step transitions
(see [9] for details). As this string of stable transitions is
implemented by a state feedback function φ , it follows by
Proposition 2 that the state/input pairs encountered during
the transition must form an implementable set. These facts
lead to the conclusion that (ii) implies (i).

IV. MODEL MATCHING BY STATIC STATE FEEDBACK

Given an asynchronous machine Σ = (A,X , f ) with state
set X = {x1, . . . ,xn}, let Σ′ = (A,X ,s′) be a stable state
machine having the same input set and state set as Σ and
serving as a model. Our objective is to find a state feedback
function ϕ : X×A→A for which Σϕ = Σ′, where the equality
refers to the stable state machine induced by Σϕ .

Recall from [2] the one-step matrix of stable transitions
R1(Σ′) — an n×n matrix that describes all one-step stable
transitions of the model Σ′. Specifically, denoting by ci j :=
{v ∈ A : s(xi,v) = x j} the set of all input characters that
take Σ′ from the state xi to the state x j in a one step stable
transition, we have

R1
i j(Σ) =

{
ci j if ci j 6=∅,

N ci j =∅,
i, j = 1, ...,n. (6)

To examine the conditions under which Σ can match the
model Σ′ via a static state feedback controller, consider
the case where an input character v ∈ A induces in Σ′ two
unrelated one-step stable transitions: one xi to x j, and another
one from xi′ to x j′ , so that v∈R1

i j(Σ
′)∩R1

i′ j′(Σ
′). Now, assume

that there is a static state feedback function ϕ : X ×A→ A
for which the closed-loop system Σϕ emulates the stable
transitions of the model Σ′, namely, that Σϕ =Σ′. Let ρ(Σ) be
the chain reachability matrix of Σ. Then, the external input
character v must induce a stable transition from xi to x j as
well as a stable transition from xi′ to x j′ in Σϕ (refer to
Figure 1). As these two transitions have the same external
input character v, the feedback function ϕ depends for these
two transitions only on the state of Σ. In view of Proposition
2, this is possible if and only if the union ρi j(Σ)∪ρi′ j′(Σ)
contains an implementable set, or, by Definition 3, if and
only if ρi j(Σ)tρi′ j′(Σ) 6= N. The same argument holds for
all one-step stable transitions of Σ′ that are induced by the
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external input character v. This fact leads to a necessary and
sufficient condition under which model matching by static
state feedback is possible. To this end, define the following
set of pairs for each character v ∈ A:

F (v|Σ′) =
{
(i, j) ∈ {1, ...,n}×{1, ...,n} : v ∈ R1

i j(Σ
′)
}

(7)

Theorem 2: Let Σ = (A,X , f ) and Σ′ = (A,X ,s′) be asyn-
chronous machines, where Σ′ is a stable state machine. Let
ρ(Σ) be the chain reachability matrix of Σ, let R1(Σ′) be
the one-step matrix of stable transitions of Σ′, and, for an
input character v ∈ A, let F (v|Σ′) be given by (7). Then, the
following two statements are equivalent.
(i) There is a static state feedback function ϕ : X ×A→ A

for which Σϕ = Σ′.
(ii) t(i, j)∈F (v|Σ′)ρi j(Σ) 6= N for all v ∈ A.

Proof: The fact that (i) implies (ii) follows from the
discussion preceding the theorem. Conversely, assume that
(ii) is valid. For a character v ∈ A, denote

σ(Σ|Σ′,v) :=
⊔

(i, j)∈F (v|Σ′)
ρi j(Σ).

If σ(Σ|Σ′,v) 6= N, then, by Theorem 1, there is a feedback
function φv : X → A for which Σφv implements all one-step
stable transitions of Σ′ that are induced by the input character
v. Now, for all pairs (x,v) ∈ X ×A for which F (v|Σ′) 6=∅,
combine the functions φv, v ∈ A, into one partial function
ϕ : X×A→ X : ϕ(x,v) := φv(x). Then, Σϕ simulates all one-
step stable transitions of the model Σ′. As a result, Σϕ also
implements any succession of stable transitions of Σ′, so that
Σϕ = Σ′, and it follows that (ii) implies (i).
Note that, in view of Proposition 3, condition (ii) of Theorem
2 just involves counting the number of members of the
appropriate sets.

A few special cases of Theorem 2 are of interest. First,
clearly, if F (v|Σ′) = ∅, then v is not a permissible input
character of the model Σ′, and hence v will never be applied
to the closed-loop system Σϕ . As a result, there is no
need to define the feedback function ϕ on any of the pairs
(x,v),x∈X , as these pairs will not be used. Similarly, if there
is an integer i ∈ {1, . . . ,n} for which (i, j) /∈F (v|Σ′) for all
integers j ∈ {1, . . . ,n}, then, the pair (xi,v) is not used by
the model Σ′, and hence it is not used by Σϕ . Consequently,
ϕ does not need to be defined on the pair (xi,v).

V. EXAMPLE
Consider the asynchronous machine Σ=(A,X , f ), where A=
{a,b,c}, X = {x1,x2,x3}, and the recursion function f is
described by the state flow diagram of Figure 2.

The stable recursion function s of Σ can be derived from
Figure 2, and is given in Table I.

To find the chain reachability matrix ρ(Σ), we use Table I
to find ρ0(Σ), ρ+(Σ), and ρ−(Σ):

ρ
0(Σ) =

 {(x1,c)} N N
N {(x2,b)} N
N N {(x3,a)}

 ;

b

x x

a

x

c

c

b

a

a,b

Fig. 2. State flow diagram of Σ.

TABLE I
STABLE RECURSION FUNCTION s OF Σ.

a b c

x1 x3 x2 x1

x2 x3 x2 x1

x3 x3 x2 -

ρ
+(Σ) = {(x1,c)} {(x1,b),(x2,b)} ρ

+
13(Σ)

{(x2,c),(x1,c)} {(x2,b)} {(x2,a),(x3,a)}
N ρ

+
32(Σ) {(x3,a)}

 ,
where

ρ
+
13(Σ) = {(x

1,a),(x2,a),(x3,a)},
ρ
+
32(Σ) = {(x

3,b),(x1,b),(x2,b)};

ρ
−(Σ) = N {(x1,b)} {(x1,a),(x2,a)}
{(x2,c)} N {(x2,a)}

N {(x3,b),(x1,b)} N

 .
As the cardinality of X is n = 3, it follows by Definition 4
that

ρ(Σ) = ρ
0(Σ)⊕ρ

1(Σ)⊕ρ
2(Σ)

= ρ
0(Σ)⊕ρ

+(Σ)⊕ [ρ−(Σ)ρ+(Σ)]

=

 {(x1,c)} {(x1,b),(x2,b)} ρ13(Σ)
{(x2,c),(x1,c)} {(x2,b)} ρ23(Σ)

N ρ32(Σ) {(x3,a)}

 ,
where

ρ13(Σ) = {{(x1,b),(x2,a),(x3,a)},{(x1,a),(x2,a),(x3,a)}},
ρ23(Σ) = {(x2,a),(x3,a)},
ρ32(Σ) = {(x3,b),(x1,b),(x2,b)}.

Consider now the model Σ′1 = (A,X ,s′1) of Figure 3.
According to (6), we have

R1(Σ′1) =

 {c} {b} {a}{c} {b} {a}
{c} {b} {a}

 .
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Fig. 3. The model Σ′1.

To check whether Σ can match the model Σ′1 via static
state feedback, we derive F (v|Σ′1) of (7) for every character
of the input set A:

F (a|Σ′1) = {(1,3),(2,3),(3,3)} ,
F (b|Σ′1) = {(1,2),(2,2),(3,2)} ,
F (c|Σ′1) = {(1,1),(2,1),(3,1)} .

Checking condition (ii) of Theorem 2 for the input character
c, Definition 3 yields

t(i, j)∈F (c|Σ′1)ρi j(Σ) = ρ11(Σ)tρ21(Σ)tρ31(Σ)

= ρ11(Σ)tρ21(Σ)tN

= N.

Thus, by Theorem 2, the machine Σ cannot match the model
Σ′1 by static state feedback.

Next, let’s examine a different model – the model Σ′2 =
(A,X ,s′2) of Figure 4.

b

x x
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c

a

b

b

a

b

x x

x

c

c

a

a,b

a,b

1
Σ′

2
Σ′

Fig. 4. The model Σ′2.

From Figure 4, we obtain

R1(Σ′2) =

 {c} N {a,b}
{c} {b} {a}
N N {a,b}

 .
Here, a calculation similar to the one done for Σ′1 above
shows that t(i, j)∈F (a|Σ′2)ρi j(Σ) 6= N, t(i, j)∈F (b|Σ′2)ρi j(Σ) 6= N,
and t(i, j)∈F (c|Σ′2)ρi j(Σ) 6= N. Consequently, by Theorem 2,
the machine Σ can match the model Σ′2 via static state
feedback control.

A static state feedback function ϕ that achieves the model
matching Σϕ = Σ′2 can be derived by following the proof
of Theorem 1. For instance, for the input character c, we

have F (c|Σ′2) = {(1,1),(2,1)}; a direct calculation shows
that ρ11(Σ) t ρ21(Σ) = {(x1,c),(x2,c)}. Hence, we assign
ϕ(x1,c) = c and ϕ(x2,c) = c. The construction of ϕ for the
remaining input characters a and b is similar.

VI. SUMMARY

We presented a methodology for the derivation of static
state feedback controllers that achieve model matching for
asynchronous sequential machines. The methodology in-
cludes a necessary and sufficient condition for the existence
of such controllers as well as a procedure for their con-
struction. The necessary and sufficient condition is relatively
simple, revolving around the counting of members of certain
sets. When feedback functions exists, they can be constructed
by following the proof of Theorem 1.

Static state feedback controllers are the simplest and
fastest controllers, as they are implemented by logical gates
and require no memory elements.
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