
Asynchronous Sequential Machines: Input/Output Control

Xiaojun Geng
Department of Electrical and Computer Engineering

California State University
Northridge, CA 91330, USA

Jacob Hammer
Department of Electrical and Computer Engineering

University of Florida
Gainesville, FL 32611–6130, USA

Email: hammer@mst.ufl.edu

Abstract

The design of output feedback controllers for

asynchronous sequential machines is considered. Main

attention is devoted to the problem of model matching.

Necessary and sufficient conditions for the existence of a

model matching controller are presented. It is shown that,

when a model matching controller exists, it can always be

implemented as a combination of an observer and a state-

feedback control unit. All controllers are designed so that

the closed loop system operates in fundamental mode.

This prevents races and hazards, and assures

deterministic operation of the closed loop system.

1. Introduction

 Asynchronous sequential machines are important

building blocks of high-speed digital computer and

control systems. The present note presents a methodology

of controlling such machines and changing their behavior

through the use of output-feedback control techniques.

(1.1)

 v u y
C Σ

Here, Σ is the asynchronous machine being controlled

and C is an asynchronous machine serving as a

controller. The objective is to design C so that the closed

loop system Σc mimics a prescribed model Σ′.

The results include necessary and sufficient conditions

for the existence of an appropriate controller C. These

conditions are presented in the form of a simple algorithm

whose outcome determines whether or not C exists. The

framework presented here builds on the results of [11]

and [12], where the model matching problem is

considered for machines whose state is available as

output. When access to the state is not available, the

problem becomes more complex and requires new

analytical tools.

One outcome of the present investigation (section 3) is

a general separation principle: whenever it exists, the

controller C can be implemented as a combination of an

observer B and a state-feedback control unit F:

(1.2)

 v u y
F Σ

B
 ω

The observer B estimates the state of Σ from

input/output data of Σ; using this estimated state, the

control unit F drives Σ along a desirable path.

To guaranty that a composite system of asynchronous

machines is well behaved, special precautions have to be

taken. Recall that an asynchronous machine has two kinds

of states: stable states, i.e., states at which the machine

can rest indefinitely; and unstable states - states through

which the machine passes quickly as part of a transient

process ([10]). If an input change occurs while the

machine is in transition through a succession of unstable

states, the response of the machine can become

unpredictable, since the state of the machine at the time of

the input change is unpredictable. One way to avoid such

uncertainty is to keep the input fixed while the machine is

not in a stable state. For the control loop (1.1), this

requires that (i) the output of C must remain fixed while

Σ is not in a stable state; and (ii) the output of Σ must

remain fixed while C is not in a stable state. When these

conditions are satisfied, the closed loop system operates

in fundamental mode. All control configurations of this

note operate in fundamental mode, which guarantees

deterministic behavior of the closed loop systems.

Proceedings of the 12th Mediterranean Conference on Control and Automation, Kusadasi, Turkey, June 2004

Controlling asynchronous machines is significantly

different from controlling other sequential machines,

since one must take into consideration specialized issues

related to the operation of asynchronous machines, like

the distinction between stable and unstable states (section

2). There is a large body of literature about the control of

other sequential machines, including [6], [7], [8], and [9],

[2], [1], [3], the study of discrete event systems ([13],

[14]), the references cited in these works, and more.

This note is organized as follows. Section 2 surveys

terminology and background; section 3 examines the

decomposition of a controller into an observer and a state-

feedback control unit; and section 4 presents a solution of

the model matching problem for asynchronous machines.

An example is provided in section 5. Many of the topics

of this note are discussed in greater detail in [5].

2. Background

An asynchronous machine is defined by a quintuple Σ
= (A,Y,X,x0,f,h). Here, A is the input alphabet, Y is the

output alphabet, X is the state set, x0 is the initial state, f

: A×X → X is the recursion function, and h : X → Y is

the output function; f and h are partial functions. The

machine operates by the recursion

(2.1)
xk+1 = f(xk, uk),

yk = h(xk), k = 0, 1, 2, ... ,

where u0, u1, u2, ... ∈ A is the input sequence; y0, y1, y2,

... ∈ Y is the output sequence; and x0, x1, x2, ... ∈ X is

the state sequence. The step counter k advances by one

upon a change of the machine's input or state. A pair

(x,u) ∈ X×A at which the function f is defined is called

a valid pair of Σ. When h = I (the identity function), we

obtain an input/state machine.

A valid pair (x,u) ∈ X×A is a stable combination if x

= f(x,u), i.e., if the machine stays indefinitely at the state

x with the input u (e.g., [10]). When (x,u) is not a

stable combination, the machine engages in a chain of

transitions x1 = f(x,u), x2 = f(x1,u), ... If there is an integer

i ≥ 1 for which (xi,u) is a stable combination, then xi is

the next stable state of x with the input u. If there is no

such i, then the machine has an infinite cycle. This note

considers only machines without infinite cycles. Ideally,

when there are no infinite cycles, it takes zero time to

reach the next stable combination, irrespective of the

number of intermediate transitions involved. Thus, from a

user's point of view, only output values that correspond to

stable combinations are noticeable, since the machine can

only linger at stable combinations. The behavior of stable

combinations is described as follows.

Let x′ be the next stable state of (x,u). The stable

recursion function s : X×A → X is defined by s(x,u) :=

x′ for all valid pairs (x,u). When restricted to stable

combinations, the function s describes the behavior of Σ
as seen by a user. The quintuple Σ|s := (A,Y,X,x0,s,h) is

the stable state machine induced by Σ.

Consider an input string u = u0u1…um–1 applied to a

machine Σ at the initial state x0. In fundamental mode

operation, the first input value u0 remains fixed until Σ
reaches the next stable state x1 := s(x0,u0). Then, the input

value switches to u1 and stays constant until the next

stable state x2
 := (s(s(x0,u0),u1) is reached. This process

continues until the last stable state xm := s(x0,u) :=

s(...s(s(s(x0,u0),u1),u2)...,um–1) is reached.

Next, we adapt to our setting several notions of

automata theory (compare to [4]).

(2.2) DEFINITION. Let Σ = (A,Y,X,x0,f,h) and Σ′ =

(A,Y,X′,ζ0,f′,h′) be machines with the same input and the

same output sets. Let Σ |s and Σ ′|s be the stable state

machines induced by Σ and Σ′, respectively. Two states

x ∈ X and ζ ∈ X′ are stably equivalent (x ≡ ζ) if the

following is true: When Σ|s starts from the state x and

Σ′|s starts from the state ζ, then (i) Σ|s and Σ′|s have the

same permissible input strings; and (ii) Σ|s and Σ ′|s
generate the same output string for every permissible

input string. The machines Σ and Σ′ are s tab ly

equivalent if x0 ≡ ζ0. ♦

Stably equivalent machines appear identical to a user.

When applied to a single machine, the presence of

equivalent states indicates a redundancy.

(2.3) DEFINITION. A machine Σ is stably reduced if its

stable state machine Σ|s has no stably equivalent states.♦

A state x′ is stably reachable from a state x (or x

can stably reach x′) if there is an input string u for

which x′ = s(x,u) (see [11] and [12] for details).

(2.4) DEFINITION. A machine Σ is stably reachable if

every state of Σ|s is stably reachable from the initial state.

The following results when all (stably) redundant and

inaccessible states are removed.

(2.5) DEFINITION. An asynchronous machine is stably

minimal if it is stably reduced and stably reachable. ♦

3. Detectability and Observers

For the control configuration (1.1) to operate in

fundamental mode, it must be possible for C to

determine whether Σ has reached its next stable

combination. In this determination, only input/output data

(i.e., the input string and the output string) of Σ can be

used, since C has no access to the state of Σ.

(3.1) DEFINITION. An asynchronous machine Σ is

detectable at a valid pair (x,u) if it is possible to

determine from input/output data whether Σ has reached

the next stable state x′ of (x,u). If so, the transition from

(x,u) to x′ is stable and detectable. ♦

The following notion is critical in this context.

(3.2) DEFINITION. Let Y be an alphabet and let y1, ...,

yq ∈ Y be a list of characters such that yi+1 ≠ yi for all i

= 1, ..., q–1. Then, the burst of a string y = y1y1 ... y1y2y2

... y2 ... yqyq ... yq is β(y) := y1y2 ... yq. ♦

The burst is obtained by removing duplicates of

neighboring characters. For example, β(abbcccaa) = abca.

The burst is the only discernible entity of an

asynchronous output string, since it is not possible to

distinguish between equal consecutive values.

Assume that Σ is in a stable combination (x1,v) when

the input character changes to u. Let x1, x2, ..., xm be the

string of states generated by this change, where xm =

s(x1,u) is the next stable state of Σ. If m > 1, set xi+1 =

f(xi,u), i = 1, ..., m – 1. The output string is then

h(x1)h(x2)…h(xm). The resulting burst is denoted by

(3.3) β(x1,u) := β(h(x1)h(x2)…h(xm–1)h(xm)).

To determine from input/output data whether Σ has

reached the stable combination (xm,u), one must

determine whether the output string h(x1)h(x2)…h(xm)

has ended. This, however, is not always feasible. For

example, when m = 3 and h(x1) = a, h(x2) = b, and h(x3)

= b, it is not possible to determine from the output

whether the machine has reached the stable combination

(x3,u): the output switches to b at x2, and remains

unchanged during the transition from x2 to x3. A slight

reflection shows that the end of the output string can be

determined if and only if β(h(x1)h(x2)…h(xm–1)) ≠

β(h(x1)h(x2)…h(xm–1)h(xm)). The latter is equivalent to

h(xm–1) ≠ h(xm). This leads to the next statement, which

uses the notation

β–1(x1,u) :=

β(h(x1)h(x2)…h(xm–1)) for m > 1,

∅ for m = 1.

(3.4) PROPOSITION. A machine Σ is detectable at a

valid pair (x,u) if and only if β–1(x,u) ≠ β(x,u).

3.1 Skeleton Matrices.

(3.5) DEFINITION. Let Σ be an asynchronous machine

with state set X = {x1, ..., xn} and stable recursion

function s. The one-step fused skeleton matrix D(Σ) is

an n×n matrix of zeros and ones whose (i,j) entry is

Dij(Σ) =

1 if there is a character u ∈ A such that Σ

 is detectable at (xi,u) and xj = s(xi,u),

0 otherwise,

i, j = 1, ..., n. ♦

When Σ is an input/state machine, the one-step fused

skeleton matrix is equal to the one-step skeleton matrix of

[11] and [12]. In general, however, the two matrices may

not be equal.

We review now some operations on skeleton matrices

from [12]. Let A, B be two n×n matrices of zeros and

ones. The combination AB is again an n×n matrix of

zeros and ones; its (i,j) entry is (AB)ij := max {AikBkj : k

= 1, ..., n}, i, j = 1, ..., n. With matrix combination, we can

consider the k-th "power" Dk(Σ) of D(Σ), k = 1, 2, ...

Let D
k
ij(Σ) be the (i,j) entry of the matrix Dk(Σ). Define

the matrix D(m)(Σ) by setting its (i,j) entry to be

D
(m)
ij (Σ):= maxk = 1, ..., m D

k
ij(Σ), m = 1, 2, …

Then, D(m)(Σ) is also a matrix of zeros and ones, and

D(1)(Σ) = D(Σ). The case m = n–1, where n is the

number of states of Σ, is of particular importance.

(3.6) DEFINITION. Let D(Σ) be the n×n one-step

fused skeleton matrix of Σ. The fused skeleton matrix of

Σ is Δ(Σ) := D(n–1)(Σ). ♦

It can be shown that Δij(Σ) = 1 if and only if the state

xj can be reached from the state xi through a chain of

stable and detectable transitions ([5]). The fused skeleton

matrix allows us to state simple necessary and sufficient

conditions for model matching. The next notion is derived

from the fused skeleton matrix.

(3.7) DEFINITION. Let Σ be an asynchronous machine

with the state set X, and let Λ 1 and Λ 2 be two

nonempty subsets of X. The reachability indicator

r(Σ,Λ1,Λ2) is defined as 1 if every element of Λ1 can

reach an element of Λ2 through a chain of stable and

detectable transitions; otherwise, r(Σ,Λ1,Λ2) := 0. ♦

To calculate the reachability indicator, consider a

machine Σ with state space X and fused skeleton matrix

Δ(Σ). Let Λ1 and Λ2 be two nonempty subsets of X,

where Λ1 has m elements and Λ2 has p elements.

Build the m×p matrix Δ|Λ1,Λ2(Σ) by deleting from Δ(Σ)

all rows that correspond to states not in Λ1 and all

columns that correspond to states not in Λ2. Then, create

a column vector V by adding all columns of Δ|Λ1,Λ2(Σ).

A slight reflection shows that r(Σ,Λ1,Λ2) = 1 if and only

if V has no zero entries. Here is an example.

(3.8) EXAMPLE. Let X = {x1, x2, x3}, Λ1 = {x1, x2}, Λ2

= {x1, x3}, and assume that

Δ(Σ) =

1 1 1

0 1 1

0 1 1
; then

Δ|Λ1,Λ2(Σ) =

1 1

0 1
, V =

2

1
,

so that r(Σ,Λ1,Λ2) = 1. ♦

3.2 Observers.

An observer is an asynchronous input/state machine

whose purpose is to calculate the present state of another

asynchronous machine from the input/output data of that

machine. To obtain an observer for a machine Σ =

(A,Y,X,x0,f,h), one can try to simulate the input/state part

Σf := (A,X,X,x0,f,I) of Σ, where I is the identity output

function. The machine Σf reproduces the transitions of

the input/state part of Σ, but the transitions of Σf and Σ
are not synchronized. For example, if Σ passes through a

state x in response to an input string w, then Σf will

also pass through the state x in response to w. However,

since the machines are asynchronous, Σ may reach the

state x either before, or during, or after the time at which

x is reached by Σf. This argument shows that it is not

possible to build an observer for transient states of Σ,

since the machines (ideally) spend zero time in a transient

state, leaving no opportunity to synchronize them. Thus,

the most one can hope for is to build an observer that

reveals stable combinations of Σ.

To deal with stable combinations, we focus our

attention on the stable input/state machine Σs =

(A,X,X,x0,s,I), where s is the stable recursion function of

Σ . The next statement, which is a consequence of

Definition 3.1 and Proposition 3.4, introduces an auxiliary

function that helps build an observer for Σ. Denote by

Y* the set of all bursts of strings of characters of Y.

(3.9) LEMMA. Let (x1,u) be a valid pair of the

asynchronous machine Σ = (A,Y,X,x0,f,h) and let xm be

the next stable state of (x1,u). When m > 1, define the

chain of transitions xi+1 = f(xi,u), i = 1, ..., m–1, and the

burst βj := β(h(x1)h(x2) ... h(xj)), j ∈ {1, ..., m}. Then the

following two statements are equivalent .

(i) The machine Σ is detectable at the pair (x1,u).

(ii) There is a function κ(x1,u,•) : Y* → {0,1} such that

κ(x1,u,βj) = 1 if and only if j = m. ♦

Using the function κ of Lemma 3.9, we build an

observer that reproduces all stable and detectable

transitions of the machine Σ . The observer is an

input/state machine B = (A×Y*,X,X,x0,σ ,I) with two

inputs: the input character u ∈ A of Σ and the output

burst β ∈ Y* of Σ. The recursion function σ : X×A×Y*

→ X of B is constructed as follows. First, using the

stable recursion function s of Σ, define the function λ :

X×A×{0,1} → X by setting

(3.10) λ(x,u,a) :=

s(x,u) if a = 1,

x if a = 0.

Then, using the function κ of Lemma 3.9, set

σ(x,u,βj) := λ(x,u,κ(x,u,βj)).

The observer B uses σ as its recursion function and

operates as follows. Assume that Σ is in a stable

combination (x,ui–1) it has reached from a detectable

pair, when the input character changes to ui, where (x,ui)

is also a detectable pair. The change of the input character

may give rise to a chain of transitions of Σ. Let k ≥ i be

a step during this chain of transitions, let βk be the burst

of Σ from step i to step k, and let uk be the input

character of Σ at step k. Fundamental mode operation

requires that the input character be kept constant during a

chain of transitions, so uk = ui. The observer B is then

the stable-state input/state machine defined by

(3.11) B:

zk+1 = σ(zk,uk,βk),

ωk = zk,

where zk and ωk are the state and the output of B at

the step k, respectively. A slight reflection shows that the

observer displays as its output the most recent stable state

the machine Σ has reached through a detectable

transition. Having developed the observer B of (1.2), we

turn our attention to the control unit F.

4. Controllers

4.1 Decomposition of controllers.

Recalling that the practical performance of an

asynchronous machine is determined by its stable-state

behavior, we formulate

(4.1) THE MODEL MATCHING PROBLEM. Given a

machine Σ and a model Σ′, find necessary and sufficient

conditions for the existence of a controller C for which

Σc is stably equivalent to Σ′. ♦

Considering that only the stable state behavior of the

model is relevant to the model matching problem, and that

reduction to stably minimal form does not alter the stable-

state behavior, we conclude that the model Σ′ can always

be taken as a stably minimal machine.

Next is one of the main results of this note. It

formalizes the separation principle depicted in (1.2).

(4.2) THEOREM. Let Σ = (A,Y,X,x0,f,h) and Σ′ =

(A,Y,X′,ζ0,s′,h ′) be stably reachable asynchronous

machines, where Σ′ is stably minimal. Then, (ii) is valid

whenever (i) is valid.

(i) There is a controller C for which Σc = Σ′, where Σc

is well posed and operates in fundamental mode.

(ii) The controller C can be designed as a combination of

an observer and a state-feedback control unit, as depicted

in (1.2), with an observer B given by (3.11).

Proof outline. The fact that Σc operates in fundamental

mode means that all the transitions of Σ used by the

closed loop system are detectable stable transitions. This

implies that, at the end of each such transition, the

observer B of (3.11) displays as its output the state x′ of

the latest stable combination reached by Σ. Now, let F

be the state-feedback controller constructed in the proof

of Theorem 4.3 of [12] (see also [12, Theorem 5.1]).

When the state x′ is fed to F, the controller F drives Σ
to match the model Σc in fundamental mode operation. ♦

The construction of controllers that solve the model

matching problem is described in [5]. Our next objective

is to derive a simple algorithm for testing the solvability

of the model matching problem.

4.2 Existence of controllers.

We start with terminology related to lists of subsets.

(4.3) DEFINITION. Let Λ = {Λ1, ..., Λm} and W = {W1,

..., Wm} be two lists of subsets of a set X. The length of

the list Λ is the number m of its members. The list W

is a subordinate list of the list Λ (written W p Λ) if it

has the same length m as the list Λ, and if Wi ⊂ Λi for

all i = 1, ..., m. A list is deficient if it includes the empty

set ∅ as one of its members. ♦

Given two sets S1 and S2 and a function g : S1 → S2,

denote by gI the inverse set-function of g; explicitly, for

an element s ∈ S2, the value gI(s) is the set of all

elements α ∈ S1 satisfying g(α) = s. The following is a

critical notion.

(4.4) DEFINITION. Let Σ = (A,Y,X,x0,f,h) and Σ′ =

(A,Y,X′,ζ0,s′,h′) be two asynchronous machines with the

same input and the same output sets, where the state set

X ′ of Σ′ consist of the q states ζ1, …, ζq. Define the

subsets Ei := hIh′(ζi) ⊂ X, i = 1, ..., q. Then, E(Σ,Σ′) :=
{E1, ..., Eq} is the output equivalence list of Σ with

respect to Σ′. ♦

In an equivalence list E(Σ,Σ′) := {E1, ..., Eq}, the value

of the output function h of Σ at any state of the set Ei

is equal to the value of the output function h′ of Σ′ at

the state ζi, i = 1, ..., q.

The following algorithm uses a recursive process to

build a decreasing chain of subordinate lists. The last list

of this chain determines whether the model matching

problem at hand is solvable or not.

(4.5) ALGORITHM. Let Σ = (A,Y,X,x0,f,h) and Σ′ =
(A,Y,X′,ζ0,f′,h′) be the machines of Theorem 4.2, let

E(Σ,Σ′) = {E1, …, Eq} be their output equivalence list,

and let K(Σ′) be the skeleton matrix of Σ′. The following

recursive process builds a decreasing chain Λ(0) f Λ(1) f

... f Λ(r) of subordinate lists of E(Σ,Σ′). The members of

the list Λ (i) are denoted by Λ1(i), ..., Λq(i); they are

subsets of the state set X of Σ.

Starting Step: Set Λ(0) := E(Σ,Σ′).

Recursion Step: Assume that a subordinate list Λ(k) =

{Λ1(k), ..., Λq(k)} of E(Σ,Σ′) has been constructed for

some integer k ≥ 0. For each pair of integers i, j ∈ {1,

…, q}, let Sij(k) be the set of all states x ∈ Λi(k) for

which the reachability indicator r(Σ,x,Λj(k)) = 0. Note

that Sij(k) may be empty. Then, set

(4.6) Tij(k) :=

Sij(k) if Kij(Σ′) = 1,

∅ if Kij(Σ') = 0 or if Sij(k) = ∅ .

Now, define the subsets

(4.7) Vi(k) := Uj = 1, ..., q Tij(k), i = 1, ..., q.

Finally, using \ to denote set difference, the next

subordinate list in our decreasing chain is given by

(4.8) Λi(k+1) := Λi(k) \ Vi(k), i = 1, ..., q.

Test Step: The algorithm terminates if the list Λ(k+1) is

deficient or if Λ(k+1) = Λ(k). Otherwise, repeat the

Recursion Step with the value of k+1 as k. ♦

The next statement shows that Algorithm 4.5 provides

a solution to the model matching problem. A closed loop

control system is well posed if its output sequence is

uniquely and causally determined by its input sequence

and the initial conditions. Recall that fundamental mode

operation guarantees a deterministic response.

(4.9) THEOREM. Let Σ = (A,Y,X,x0,f,h) and Σ′ =

(A,Y,X′,ζ0,s′,h ′) be stably reachable asynchronous

machines, where Σ′ is stably minimal and has the state

set X′ = {ζ1, ..., ζq} and the initial condition ζ0 = ζd. Let

Λ (r) = {Λ 1(r), ..., Λ q(r)} be the list generated by

Algorithm 4.5. The following two statements are

equivalent:

(i) There is a controller C for which Σc = Σ′, where Σc

is well posed and operates in fundamental mode.

(ii) The list Λ(r) is not deficient and x0 ∈ Λd(r).

Proof outline. Clearly, (i) means that the closed loop

system Σc mimics the output pattern of the model Σ′.
Now, all states of the set Ei generate the same output

value as the state ζi of Σ′, i = 1, ..., q. Thus, the model

matching problem is solvable if and only if there is a

subset of states of Ei that can imitate all transitions of the

state ζi, i = 1, ..., q. A slight reflection shows that,

recursively, the operation (4.8) removes all those states of

Ei that cannot imitate some of the transitions of the state

ζi. The remaining states form the set Λi(r); they constitute

the largest subset of states of Σ that can mimic the

transitions as well as the output of the state ζi of Σ ′.
Thus, the model matching problem is solvable if and only

if Λi(r) ≠ ∅ for all i = 1, ..., q, i.e., if and only if Λ(r) is

not deficient. The requirement x0 ∈ Λd(r) assures

compatibility of the initial conditions. ♦

By Theorem 4.9, we can determine the existence of a

solution to the model matching problem by using

Algorithm 4.5. It is not hard to verify that Algorithm 4.5

has polynomial complexity.

5. Example

Consider two asynchronous machines Σ =

(A,Y,X,x0,f,h) and Σ′ = (A,Y,X′,ζ0,f′,h′), both having the

input set A = {a,b,c} and the output set Y = {0,1,2}. For

Σ, the state set is X = {x1, …, x6} and the initial state is

x0 = x1; for Σ′, the state set is X′ = { ζ1, …, ζ4} and the

initial state is ζ0 = ζ1. The following tables indicate the

corresponding recursion functions of the machines.

(5.1) The machine Σ (5.2) The machine Σ′

We use Algorithm 4.5 to check whether there is a

controller C for which Σc matches the model Σ′. First,

the output equivalence list of Σ with respect to Σ′ is

E(Σ,Σ′) = {E1,E2,E3,E4}, where E1 = {x1,x4,x5}, E2 =

{x2,x6}, E3 = {x3}, and E4 = {x1,x4,x5}.

Applying Algorithm 4.5, we obtain after two recursion

steps

(5.3) Λ(2) = Λ(1) = {Λ1(2),Λ2(2),Λ3(2),Λ4(2)}, where

Λ1(2) = {x1}, Λ2(2) = {x2}, Λ3(2) = {x3}, and

Λ4(2) = {x1,x4,x5}.

Since the list is not deficient, we conclude by Theorem

4.9 that there is a controller C that solves our model

matching problem. For the construction of an appropriate

controller, see [5]. ♦

6. References

[1] BARRETT, G., and LAFORTUNE, S., [1998],

"Bisimulation, the Supervisory Control Problem, and

Strong Model Matching for Finite State Machines,"

Journal of Discrete Event Dynamic Systems, Volume 8,

number 4, 1998, pp. 377–429.

[2] DIBENEDETTO, M.D., SALDANHA, A., and

SANGIOVANNI–VINCENTELLI, A., [1994], "Model

matching for finite state machines," Proceedings of the

IEEE Conf. on Decision and Control, vol. 3, 1994, pp.

3117–3124.

[3] DIBENEDETTO, M.D., SANGIOVANNI–VINCENTELLI,

A., and VILLA, T., [2001], ″Model matching for

finite–state machines,″ IEEE Transactions on Automatic

Control, vol. 46, no. 11, 2001, pp. 1726–1743.

[4] EILENBERG, S., [1974], "Automata, languages, and

machines", Academic Press, NY, 1974.

[5] GENG, X., and HAMMER, J., [2003], "Input/output control

of asynchronous sequential machines", submitted for

publication.

[6] HAMMER, J., [1994], "On some control problems in

molecular biology," Proceedings of the IEEE Conference

on Decision and Control, Vol. 4, 1994, pp. 4098–4103.

[7] HAMMER, J., [1995] "On the modeling and control of

biological signaling chains," Proceedings of the IEEE

Conference on Decision and Control, Vol. 4, 1995, pp.

3747–3752.

[8] HAMMER, J., [1996a] "On corrective control of sequential

machines," International Journal of Control, Vol. 65, No.

65, 1996, pp. 249–276.

[9] HAMMER, J., [1996b] "On the control of incompletely

described sequential machines," International Journal of

Control Vol. 63, No. 6, 1996, pp. 1005–1028.

[10] KOHAVI, Z., [1970], "Switching and Finite Automata

Theory," McGraw–Hill Book Company, New York, 1970.

[11] MURPHY, T.E., GENG, X., and HAMMER, J., [2002],

″Controlling races in asynchronous sequential machines,″

in Proceedings of 2002 IFAC World Congress, July 2002,

Barcelona, Spain.

[12] MURPHY, T.E., GENG, X., and HAMMER, J., [2003]

″On the control of asynchronous machines with races,″

IEEE Transactions on Automatic Control, vol. 48, no. 6,

pp. 1073-1081.

[13] RAMADGE, P.J.G., and WONHAM, W.M., [1987]

"Supervisory Control of a Class of Discrete Event

Processes," SIAM J. Control and Optimization, vol. 25, no.

1, pp. 206 - 230, Jan. 1987.

[14] THISTLE, J. G. and WONHAM, W.M., [1994] "Control of

infinite behavior of finite automata," SIAM J. on Control

and Optimization, v 32 n 4 p 1075-1097.

a b c Y

x1 x2 x3 x1 0

x2 x2 x2 x4 1

x3 x3 x3 x5 2

x4 x6 x6 x4 0

x5 x5 x5 x5 0

x6 x6 x6 x6 1

a b c Y

ζ1 ζ1 ζ2 ζ3 0

ζ2 ζ2 ζ2 ζ4 1

ζ3 ζ4 ζ4 ζ3 2

ζ4 ζ4 ζ4 ζ4 0

