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Abstract

The design of output feedback controllers for

asynchronous sequential machines is considered. Main

attention is devoted to the problem of model matching.

Necessary and sufficient conditions for the existence of a

model matching controller are presented. It is shown that,

when a model matching controller exists, it can always be

implemented as a combination of an observer and a state-

feedback control unit. All controllers are designed so that

the closed loop system operates in fundamental mode.

This prevents races and hazards, and assures

deterministic operation of the closed loop system.

1.  Introduction

 Asynchronous sequential machines are important

building blocks of high-speed digital computer and

control systems. The present note presents a methodology

of controlling such machines and changing their behavior

through the use of output-feedback control techniques.

(1.1)

 v  u  y
C Σ

Here, Σ  is the asynchronous machine being controlled

and  C  is an asynchronous machine serving as a

controller. The objective is to design  C  so that the closed

loop system  Σc  mimics a prescribed model  Σ′.

The results include necessary and sufficient conditions

for the existence of an appropriate controller  C. These

conditions are presented in the form of a simple algorithm

whose outcome determines whether or not  C  exists. The

framework presented here builds on the results of [11]

and [12], where the model matching problem is

considered for machines whose state is available as

output. When access to the state is not available, the

problem becomes more complex and requires new

analytical tools.

One outcome of the present investigation (section 3) is

a general separation principle: whenever it exists, the

controller  C  can be implemented as a combination of an

observer  B  and a state-feedback control unit  F:

(1.2)

 v  u  y
F Σ

B
 ω

The observer  B  estimates the state of  Σ   from

input/output data of  Σ; using this estimated state, the

control unit  F  drives  Σ  along a desirable path.

To guaranty that a composite system of asynchronous

machines is well behaved, special precautions have to be

taken. Recall that an asynchronous machine has two kinds

of states: stable states, i.e., states at which the machine

can rest indefinitely; and unstable states - states through

which the machine passes quickly as part of a transient

process ([10]). If an input change occurs while the

machine is in transition through a succession of unstable

states, the response of the machine can become

unpredictable, since the state of the machine at the time of

the input change is unpredictable. One way to avoid such

uncertainty is to keep the input fixed while the machine is

not in a stable state. For the control loop (1.1), this

requires that (i) the output of  C  must remain fixed while

Σ  is not in a stable state; and (ii) the output of  Σ  must

remain fixed while  C  is not in a stable state. When these

conditions are satisfied, the closed loop system operates

in fundamental mode. All control configurations of this

note operate in fundamental mode, which guarantees

deterministic behavior of the closed loop systems.
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Controlling asynchronous machines is significantly

different from controlling other sequential machines,

since one must take into consideration specialized issues

related to the operation of asynchronous machines, like

the distinction between stable and unstable states (section

2). There is a large body of literature about the control of

other sequential machines, including [6], [7], [8], and [9],

[2], [1], [3], the study of discrete event systems ([13],

[14]), the references cited in these works, and more.

This note is organized as follows. Section 2 surveys

terminology and background; section 3 examines the

decomposition of a controller into an observer and a state-

feedback control unit; and section 4 presents a solution of

the model matching problem for asynchronous machines.

An example is provided in section 5. Many of the topics

of this note are discussed in greater detail in [5].

2.  Background

An asynchronous machine is defined by a quintuple  Σ
= (A,Y,X,x0,f,h). Here, A  is the input alphabet, Y  is the

output alphabet, X  is the state set, x0  is the initial state, f

: A×X → X  is the recursion function, and  h : X → Y   is

the output function; f  and  h  are partial functions. The

machine operates by the recursion

(2.1)
xk+1 = f(xk, uk),

yk = h(xk), k = 0, 1, 2, ... ,

where  u0, u1, u2, ... ∈ A  is the input sequence; y0, y1, y2,

... ∈ Y  is the output sequence; and  x0, x1, x2, ... ∈ X  is

the state sequence. The step counter  k  advances by one

upon a change of the machine's input or state. A pair

(x,u) ∈ X×A  at which the function  f  is defined is called

a valid pair of  Σ. When  h = I  (the identity function), we

obtain an input/state machine.

A valid pair  (x,u) ∈ X×A  is a stable combination if  x

= f(x,u), i.e., if the machine stays indefinitely at the state

x  with the input  u  (e.g., [10]). When  (x,u)  is not a

stable combination, the machine engages in a chain of

transitions  x1 = f(x,u), x2 = f(x1,u), ... If there is an integer

i ≥ 1  for which  (xi,u)  is a stable combination, then  xi  is

the next stable state of  x  with the input  u. If there is no

such  i, then the machine has an infinite cycle. This note

considers only machines without infinite cycles. Ideally,

when there are no infinite cycles, it takes zero time to

reach the next stable combination, irrespective of the

number of intermediate transitions involved. Thus, from a

user's point of view, only output values that correspond to

stable combinations are noticeable, since the machine can

only linger at stable combinations. The behavior of stable

combinations is described as follows.

Let  x′  be the next stable state of  (x,u). The stable

recursion function  s : X×A → X  is defined by  s(x,u) :=

x′  for all valid pairs  (x,u). When restricted to stable

combinations, the function  s  describes the behavior of  Σ
as seen by a user. The quintuple  Σ|s := (A,Y,X,x0,s,h)  is

the stable state machine induced by  Σ.

Consider an input string  u = u0u1…um–1  applied to a

machine  Σ  at the initial state  x0. In fundamental mode

operation, the first input value  u0  remains fixed until  Σ
reaches the next stable state  x1 := s(x0,u0). Then, the input

value switches to  u1  and stays constant until the next

stable state  x2
 := (s(s(x0,u0),u1)  is reached. This process

continues until the last stable state  xm := s(x0,u) :=

s(...s(s(s(x0,u0),u1),u2)...,um–1)  is reached.

Next, we adapt to our setting several notions of

automata theory (compare to [4]).

(2.2) DEFINITION. Let  Σ = (A,Y,X,x0,f,h)  and  Σ′  =

(A,Y,X′,ζ0,f′,h′)  be machines with the same input and the

same output sets. Let  Σ |s  and  Σ ′|s  be the stable state

machines induced by  Σ  and  Σ′, respectively. Two states

x ∈  X  and  ζ ∈  X′  are stably equivalent (x ≡ ζ) if the

following is true: When  Σ|s  starts from the state  x  and

Σ′|s  starts from the state  ζ, then (i)  Σ|s  and  Σ′|s  have the

same permissible input strings; and (ii)  Σ|s  and  Σ ′|s
generate the same output string for every permissible

input string. The machines  Σ   and  Σ′  are s tab ly

equivalent if  x0 ≡ ζ0. ♦

Stably equivalent machines appear identical to a user.

When applied to a single machine, the presence of

equivalent states indicates a redundancy.

(2.3) DEFINITION. A machine  Σ  is stably reduced if its

stable state machine  Σ|s  has no stably equivalent states.♦

A state  x′  is stably reachable from a state  x  (or  x

can stably reach  x′) if there is an input string  u  for

which  x′ = s(x,u)  (see [11] and [12] for details).

(2.4) DEFINITION. A machine  Σ   is stably reachable if

every state of  Σ|s  is stably reachable from the initial state.

The following results when all (stably) redundant and

inaccessible states are removed.

(2.5) DEFINITION. An asynchronous machine is stably

minimal if it is stably reduced and stably reachable. ♦

3.  Detectability and Observers

For the control configuration (1.1) to operate in

fundamental mode, it must be possible for  C  to

determine whether  Σ   has reached its next stable

combination. In this determination, only input/output data

(i.e., the input string and the output string) of  Σ  can be

used, since  C  has no access to the state of  Σ.



(3.1) DEFINITION. An asynchronous machine  Σ   is

detectable  at a valid pair  (x,u)  if it is possible to

determine from input/output data whether  Σ  has reached

the next stable state  x′  of  (x,u). If so, the transition from

(x,u)  to  x′  is stable and detectable. ♦

The following notion is critical in this context.

(3.2) DEFINITION. Let  Y  be an alphabet and let  y1, ...,

yq ∈ Y  be a list of characters such that  yi+1 ≠ yi  for all  i

= 1, ..., q–1. Then, the burst of a string  y = y1y1 ... y1y2y2

... y2 ... yqyq ... yq  is  β(y) := y1y2 ... yq. ♦

The burst is obtained by removing duplicates of

neighboring characters. For example, β(abbcccaa) = abca.

The burst is the only discernible entity of an

asynchronous output string, since it is not possible to

distinguish between equal consecutive values.

Assume that  Σ  is in a stable combination  (x1,v)  when

the input character changes to  u. Let  x1, x2, ..., xm  be the

string of states generated by this change, where  xm =

s(x1,u)  is the next stable state of  Σ. If  m > 1, set  xi+1 =

f(xi,u), i = 1, ..., m – 1. The output string is then

h(x1)h(x2)…h(xm). The resulting burst is denoted by

(3.3) β(x1,u) := β(h(x1)h(x2)…h(xm–1)h(xm)).

To determine from input/output data whether  Σ   has

reached the stable combination  (xm,u), one must

determine whether the output string  h(x1)h(x2)…h(xm)

has ended. This, however, is not always feasible. For

example, when  m = 3  and  h(x1) = a, h(x2) = b, and h(x3)

= b, it is not possible to determine from the output

whether the machine has reached the stable combination

(x3,u): the output switches to  b  at  x2, and remains

unchanged during the transition from  x2  to  x3. A slight

reflection shows that the end of the output string can be

determined if and only if  β(h(x1)h(x2)…h(xm–1)) ≠

β(h(x1)h(x2)…h(xm–1)h(xm)). The latter is equivalent to

h(xm–1) ≠ h(xm). This leads to the next statement, which

uses the notation

β–1(x1,u) := 


β(h(x1)h(x2)…h(xm–1))  for  m > 1,

∅  for  m = 1.

(3.4) PROPOSITION. A machine  Σ   is detectable at a

valid pair  (x,u)  if and only if  β–1(x,u) ≠ β(x,u).

3.1 Skeleton Matrices.

(3.5) DEFINITION. Let  Σ  be an asynchronous machine

with state set  X = {x1, ..., xn}  and stable recursion

function  s. The one-step fused skeleton matrix  D(Σ)  is

an  n×n  matrix of zeros and ones whose  (i,j)  entry is

Dij(Σ) = 


1   if there is a character  u ∈ A  such that  Σ

    is detectable at  (xi,u)  and  xj = s(xi,u),

0   otherwise,

i, j = 1, ..., n. ♦

When  Σ  is an input/state machine, the one-step fused

skeleton matrix is equal to the one-step skeleton matrix of

[11] and [12]. In general, however, the two matrices may

not be equal.

We review now some operations on skeleton matrices

from  [12]. Let  A, B  be two  n×n  matrices of zeros and

ones. The combination  AB  is again an  n×n  matrix of

zeros and ones; its  (i,j)  entry is  (AB)ij := max {AikBkj : k

= 1, ..., n}, i, j = 1, ..., n. With matrix combination, we can

consider the  k-th "power"  Dk(Σ)  of  D(Σ), k = 1, 2, ...

Let  D
k
ij(Σ)  be the  (i,j)  entry of the matrix  Dk(Σ). Define

the matrix  D(m)(Σ)  by setting its  (i,j)  entry to be

D
(m)
ij (Σ):= maxk = 1, ..., m D

k
ij(Σ), m = 1, 2, …

Then, D(m)(Σ)  is also a matrix of zeros and ones, and

D(1)(Σ ) = D(Σ ). The case  m = n–1, where  n  is the

number of states of  Σ, is of particular importance.

(3.6) DEFINITION. Let  D(Σ)  be the  n×n  one-step

fused skeleton matrix of  Σ. The fused skeleton matrix of

Σ  is  Δ(Σ) := D(n–1)(Σ). ♦

It can be shown that  Δij(Σ) = 1  if and only if the state

xj  can be reached from the state  xi  through a chain of

stable and detectable transitions ([5]). The fused skeleton

matrix allows us to state simple necessary and sufficient

conditions for model matching. The next notion is derived

from the fused skeleton matrix.

(3.7) DEFINITION. Let  Σ  be an asynchronous machine

with the state set  X, and let  Λ 1  and  Λ 2  be two

nonempty subsets of  X. The reachability indicator

r(Σ,Λ1,Λ2)  is defined as  1  if every element of  Λ1  can

reach an element of  Λ2  through a chain of stable and

detectable transitions; otherwise, r(Σ,Λ1,Λ2) := 0. ♦

To calculate the reachability indicator, consider a

machine  Σ  with state space  X  and fused skeleton matrix

Δ(Σ). Let  Λ1  and  Λ2  be two nonempty subsets of  X,

where  Λ1  has  m  elements and  Λ2  has  p  elements.

Build the  m×p  matrix  Δ|Λ1,Λ2(Σ)  by deleting from  Δ(Σ)

all rows that correspond to states not in  Λ1  and all

columns that correspond to states not in  Λ2. Then, create

a column vector  V  by adding all columns of  Δ|Λ1,Λ2(Σ).

A slight reflection shows that  r(Σ,Λ1,Λ2) = 1  if and only

if  V  has no zero entries. Here is an example.

(3.8) EXAMPLE. Let  X = {x1, x2, x3}, Λ1 = {x1, x2}, Λ2

= {x1, x3}, and assume that

Δ(Σ) = 






1 1 1

0 1 1

0 1 1
; then



Δ|Λ1,Λ2(Σ) = 



1 1

0 1
, V = 



2

1
,

so that  r(Σ,Λ1,Λ2) = 1. ♦

3.2 Observers.

An observer is an asynchronous input/state machine

whose purpose is to calculate the present state of another

asynchronous machine from the input/output data of that

machine. To obtain an observer for a machine  Σ  =

(A,Y,X,x0,f,h), one can try to simulate the input/state part

Σf := (A,X,X,x0,f,I)  of  Σ, where  I  is the identity output

function. The machine  Σf  reproduces the transitions of

the input/state part of  Σ, but the transitions of  Σf  and  Σ
are not synchronized. For example, if  Σ  passes through a

state  x  in response to an input string  w, then  Σf  will

also pass through the state  x  in response to  w. However,

since the machines are asynchronous, Σ  may reach the

state  x  either before, or during, or after the time at which

x  is reached by  Σf. This argument shows that it is not

possible to build an observer for transient states of  Σ,

since the machines (ideally) spend zero time in a transient

state, leaving no opportunity to synchronize them. Thus,

the most one can hope for is to build an observer that

reveals stable combinations of  Σ.

To deal with stable combinations, we focus our

attention on the stable input/state machine  Σs =

(A,X,X,x0,s,I), where  s  is the stable recursion function of

Σ . The next statement, which is a consequence of

Definition 3.1 and Proposition 3.4, introduces an auxiliary

function that helps build an observer for  Σ. Denote by

Y*  the set of all bursts of strings of characters of  Y.

(3.9) LEMMA. Let  (x1,u)  be a valid pair of the

asynchronous machine  Σ = (A,Y,X,x0,f,h)  and let  xm  be

the next stable state of  (x1,u). When  m > 1, define the

chain of transitions  xi+1 = f(xi,u), i = 1, ..., m–1, and the

burst  βj := β(h(x1)h(x2) ... h(xj)), j ∈ {1, ..., m}. Then the

following two statements are equivalent .

(i) The machine  Σ   is detectable at the pair  (x1,u).

(ii) There is a function  κ(x1,u,•) : Y* → {0,1}  such that

κ(x1,u,βj) = 1  if and only if  j = m. ♦

Using the function  κ   of Lemma 3.9, we build an

observer that reproduces all stable and detectable

transitions of the machine  Σ . The observer is an

input/state machine  B = (A×Y*,X,X,x0,σ ,I)  with two

inputs: the input character  u ∈ A  of  Σ  and the output

burst  β ∈ Y*  of  Σ. The recursion function  σ : X×A×Y*

→  X  of  B  is constructed as follows. First, using the

stable recursion function  s  of  Σ, define the function  λ :

X×A×{0,1} → X  by setting

(3.10) λ(x,u,a) := 

s(x,u)  if  a = 1,

x  if  a = 0.

Then, using the function  κ  of Lemma 3.9, set

σ(x,u,βj) := λ(x,u,κ(x,u,βj)).

The observer  B  uses  σ  as its recursion function and

operates as follows. Assume that  Σ   is in a stable

combination  (x,ui–1)  it has reached from a detectable

pair, when the input character changes to  ui, where  (x,ui)

is also a detectable pair. The change of the input character

may give rise to a chain of transitions of  Σ. Let  k ≥ i  be

a step during this chain of transitions, let  βk  be the burst

of  Σ  from step  i  to step  k, and let  uk  be the input

character of  Σ  at step  k. Fundamental mode operation

requires that the input character be kept constant during a

chain of transitions, so  uk = ui. The observer  B  is then

the stable-state input/state machine defined by

(3.11) B:


zk+1 = σ(zk,uk,βk),

ωk = zk,

where  zk  and  ωk  are the state and the output of  B  at

the step  k, respectively. A slight reflection shows that the

observer displays as its output the most recent stable state

the machine  Σ   has reached through a detectable

transition. Having developed the observer  B  of (1.2), we

turn our attention to the control unit  F.

4.  Controllers

4.1 Decomposition of controllers.

Recalling that the practical performance of an

asynchronous machine is determined by its stable-state

behavior, we formulate

(4.1) THE MODEL MATCHING PROBLEM. Given a

machine  Σ  and a model  Σ′, find necessary and sufficient

conditions for the existence of a controller  C  for which

Σc  is stably equivalent to  Σ′. ♦

Considering that only the stable state behavior of the

model is relevant to the model matching problem, and that

reduction to stably minimal form does not alter the stable-

state behavior, we conclude that the model  Σ′  can always

be taken as a stably minimal machine.

Next is one of the main results of this note. It

formalizes the separation principle depicted in (1.2).

(4.2) THEOREM. Let  Σ = (A,Y,X,x0,f,h)  and  Σ′  =

(A,Y,X′,ζ0,s′,h ′)  be stably reachable asynchronous

machines, where  Σ′  is stably minimal. Then, (ii) is valid

whenever (i) is valid.

(i) There is a controller  C  for which  Σc = Σ′, where  Σc



is well posed and operates in fundamental mode.

(ii) The controller  C  can be designed as a combination of

an observer and a state-feedback control unit, as depicted

in (1.2), with an observer  B  given by (3.11).

Proof outline. The fact that  Σc  operates in fundamental

mode means that all the transitions of  Σ  used by the

closed loop system are detectable stable transitions. This

implies that, at the end of each such transition, the

observer  B  of (3.11) displays as its output the state  x′  of

the latest stable combination reached by  Σ. Now, let  F

be the state-feedback controller constructed in the proof

of Theorem 4.3 of [12] (see also [12, Theorem 5.1]).

When the state  x′  is fed to  F, the controller  F  drives  Σ
to match the model  Σc  in fundamental mode operation. ♦

The construction of controllers that solve the model

matching problem is described in [5]. Our next objective

is to derive a simple algorithm for testing the solvability

of the model matching problem.

4.2  Existence of controllers.

We start with terminology related to lists of subsets.

(4.3) DEFINITION. Let  Λ = {Λ1, ..., Λm}  and  W = {W1,

..., Wm}  be two lists of subsets of a set  X. The length of

the list  Λ  is the number  m  of its members. The list  W

is a subordinate list of the list  Λ  (written  W p Λ) if it

has the same length  m  as the list  Λ, and if  Wi ⊂ Λi  for

all  i = 1, ..., m. A list is deficient if it includes the empty

set  ∅  as one of its members. ♦

Given two sets  S1  and  S2  and a function  g : S1 → S2,

denote by  gI  the inverse set-function of  g; explicitly, for

an element  s ∈  S2, the value  gI(s)  is the set of all

elements  α ∈ S1  satisfying  g(α) = s. The following is a

critical notion.

(4.4) DEFINITION. Let  Σ = (A,Y,X,x0,f,h)  and  Σ′ =

(A,Y,X′,ζ0,s′,h′)  be two asynchronous machines with the

same input and the same output sets, where the state set

X ′  of  Σ′  consist of the  q  states  ζ1, …, ζq. Define the

subsets  Ei := hIh′(ζi) ⊂  X, i = 1, ..., q. Then, E(Σ,Σ′) :=
{E1, ..., Eq}  is the output equivalence list  of  Σ   with

respect to  Σ′. ♦

In an equivalence list  E(Σ,Σ′) := {E1, ..., Eq}, the value

of the output function  h  of  Σ  at any state of the set  Ei

is equal to the value of the output function  h′  of  Σ′  at

the state  ζi, i = 1, ..., q.

The following algorithm uses a recursive process to

build a decreasing chain of subordinate lists. The last list

of this chain determines whether the model matching

problem at hand is solvable or not.

(4.5) ALGORITHM. Let  Σ = (A,Y,X,x0,f,h)  and  Σ′ =
(A,Y,X′,ζ0,f′,h′)  be the machines of Theorem 4.2, let

E(Σ,Σ′) = {E1, …, Eq}  be their output equivalence list,

and let  K(Σ′)  be the skeleton matrix of  Σ′. The following

recursive process builds a decreasing chain  Λ(0) f Λ(1) f

... f Λ(r)  of subordinate lists of  E(Σ,Σ′). The members of

the list  Λ (i)  are denoted by  Λ1(i), ..., Λq(i); they are

subsets of the state set  X  of  Σ.

Starting Step: Set  Λ(0) := E(Σ,Σ′).

Recursion Step: Assume that a subordinate list  Λ(k) =

{Λ1(k), ..., Λq(k)}  of  E(Σ,Σ′)  has been constructed for

some integer  k ≥ 0. For each pair of integers  i, j ∈ {1,

…, q}, let  Sij(k)  be the set of all states  x ∈  Λi(k)  for

which the reachability indicator  r(Σ,x,Λj(k)) = 0. Note

that  Sij(k)  may be empty. Then, set

(4.6) Tij(k) := 


Sij(k)  if  Kij(Σ′) = 1,

∅  if  Kij(Σ') = 0  or if  Sij(k) = ∅ . 

Now, define the subsets

(4.7) Vi(k) := Uj = 1, ..., q Tij(k), i = 1, ..., q.

Finally, using  \  to denote set difference, the next

subordinate list in our decreasing chain is given by

(4.8) Λi(k+1) := Λi(k) \ Vi(k), i = 1, ..., q.

Test Step: The algorithm terminates if the list  Λ(k+1)  is

deficient or if  Λ(k+1) = Λ(k). Otherwise, repeat the

Recursion Step with the value of  k+1  as  k. ♦

The next statement shows that Algorithm 4.5 provides

a solution to the model matching problem. A closed loop

control system is well posed if its output sequence is

uniquely and causally determined by its input sequence

and the initial conditions. Recall that fundamental mode

operation guarantees a deterministic response.

(4.9) THEOREM. Let  Σ = (A,Y,X,x0,f,h)  and  Σ′  =

(A,Y,X′,ζ0,s′,h ′)  be stably reachable asynchronous

machines, where  Σ′  is stably minimal and has the state

set  X′ = {ζ1, ..., ζq}  and the initial condition  ζ0 = ζd. Let

Λ (r) = {Λ 1(r), ..., Λ q(r)}  be the list generated by

Algorithm 4.5. The following two statements are

equivalent:

(i) There is a controller  C  for which  Σc = Σ′, where  Σc

is well posed and operates in fundamental mode.

(ii) The list  Λ(r)  is not deficient and  x0 ∈ Λd(r).

Proof outline. Clearly, (i) means that the closed loop

system  Σc  mimics the output pattern of the model  Σ′.
Now, all states of the set  Ei  generate the same output

value as the state  ζi  of  Σ′, i = 1, ..., q. Thus, the model

matching problem is solvable if and only if there is a

subset of states of  Ei  that can imitate all transitions of the

state  ζi, i = 1, ..., q. A slight reflection shows that,

recursively, the operation (4.8) removes all those states of

Ei  that cannot imitate some of the transitions of the state

ζi. The remaining states form the set  Λi(r); they constitute



the largest subset of states of  Σ   that can mimic the

transitions as well as the output of the state  ζi  of  Σ ′.
Thus, the model matching problem is solvable if and only

if  Λi(r) ≠ ∅  for all  i = 1, ..., q, i.e., if and only if  Λ(r)  is

not deficient. The requirement  x0 ∈  Λd(r)  assures

compatibility of the initial conditions. ♦

By Theorem 4.9, we can determine the existence of a

solution to the model matching problem by using

Algorithm 4.5. It is not hard to verify that Algorithm 4.5

has polynomial complexity.

5.  Example

Consider two asynchronous machines  Σ  =

(A,Y,X,x0,f,h)  and  Σ′ = (A,Y,X′,ζ0,f′,h′), both having the

input set  A = {a,b,c}  and the output set  Y = {0,1,2}. For

Σ, the state set is  X = {x1, …, x6}  and the initial state is

x0 = x1; for  Σ′, the state set is  X′ = { ζ1, …, ζ4}  and the

initial state is  ζ0 = ζ1. The following tables indicate the

corresponding recursion functions of the machines.

(5.1) The machine Σ                 (5.2) The machine Σ′

We use Algorithm 4.5 to check whether there is a

controller  C  for which  Σc  matches the model  Σ′. First,

the output equivalence list of  Σ  with respect to  Σ′  is

E(Σ,Σ′) = {E1,E2,E3,E4}, where  E1 = {x1,x4,x5}, E2 =

{x2,x6}, E3 = {x3}, and  E4 = {x1,x4,x5}.

Applying Algorithm 4.5, we obtain after two recursion

steps

(5.3) Λ(2) = Λ(1) = {Λ1(2),Λ2(2),Λ3(2),Λ4(2)}, where

Λ1(2) = {x1}, Λ2(2) = {x2}, Λ3(2) = {x3}, and  

Λ4(2) = {x1,x4,x5}.

Since the list is not deficient, we conclude by Theorem

4.9 that there is a controller  C  that solves our model

matching problem. For the construction of an appropriate

controller, see [5]. ♦
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a b c Y

x1 x2 x3 x1 0

x2 x2 x2 x4 1

x3 x3 x3 x5 2

x4 x6 x6 x4 0

x5 x5 x5 x5 0

x6 x6 x6 x6 1

a b c Y

ζ1 ζ1 ζ2 ζ3 0

ζ2 ζ2 ζ2 ζ4 1

ζ3 ζ4 ζ4 ζ3 2

ζ4 ζ4 ζ4 ζ4 0


