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Asynchronous sequential machines with adversarial intervention: the use of bursts
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Feedback controllers can automatically counteract the effects of adversarial interventions on the operation of
asynchronous sequential machines. The use of bursts – fast outbursts of characters generated by a controlled
machine during transition – helps broaden the conditions under which such controllers exist. Necessary and
sufficient conditions for the existence of state feedback controllers that employ bursts to counteract the effects of
adversarial interventions are presented. Design techniques for such controllers are also described.
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1. Introduction

Asynchronous sequential machines are sequential logic
circuits that operate without a clock. They are
employed in the construction of computing machines,
industrial controllers, traffic control systems and
related applications. In addition, asynchronous
sequential machines play an important role in the
analysis and design of massively parallel computing
systems and in the modelling of signalling chains in
molecular biology (e.g. Hammer 1994). An important
issue in the operation of asynchronous sequential
machines is the possible impact of adversarial inter-
ventions on proper function. Examples of such
interventions are provided by attempts of rogue
computer operators to infiltrate computing networks,
or by the impact of viruses, bacteria or prions on
biological cell function. This article explores the
possibility of designing feedback controllers that
automatically counteract adversarial interventions
and restore affected machines to normal operation.

Specifically, consider an asynchronous machine !
with two inputs: a legitimate input – the control input –
and a subversive input – the adversarial input. The
objective is to develop controllers that automatically
counteract the effects of commands received through
the adversarial input. The situation is described in
Figure 1.

Here, the asynchronous machine ! is controlled by
another asynchronous machine C, which serves as a
controller. As depicted in the figure, the machine ! has
two inputs: the control input u and the adversarial
input w. The adversarial input represents attempts to

interfere with the operation of the machine. The closed
loop machine shown in the diagram is denoted by !c.
Note that the controller has no direct access to the
adversarial input.

A command received at the adversarial input w
may cause the machine ! to undergo state transitions,
and these are detected by the controller C. If possible,
the controller automatically reacts by entering a
command string into the control input u of ! to
reverse these transitions and take ! back to the state it
occupied before the adversarial event. Being an
asynchronous machine, the controller’s reaction is
very quick (ideally, in zero time). Thus, when the
controller is successful, users of the closed loop
machine !c remain unaware of adversarial
interferences.

A brief review of some general features of
asynchronous machines is in order. An asynchronous
machine may occupy a stable state – a state at which
the machine lingers until an input change occurs, or a
transient state – a state through which the machine
passes quickly on its way from one stable state to
another. Often, a transition from one stable state to
another takes the machine through several transient
states. A burst is a fast string of output characters
created by an asynchronous machine during a transi-
tion from one stable state to another. When the output
of the machine is its state, a burst consists of the
sequence of transient states the machine passes during
a transition.

In Figure 1, the machine ! provides its state as
output, and C is a state feedback controller equipped
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with a shift register that records bursts generated by !.
Endowing C with tools to process bursts enhances its
ability to counteract adversarial interventions at the
cost of a moderate increase in complexity. Controllers
that counteract adversarial interventions without
utilising bursts are discussed in Yang and Hammer
(2008a, b). There, the controller is activated when the
controlled machine ! reaches a stable state, and the
action of the controller is based entirely on the current
stable state of !; information about the string of
transient states that ! might have passed on its way to
the latest stable state, i.e. information about the burst
of !, is not recorded and not utilised. In contrast, the
article introduces a new class of controllers that record
bursts generated by the controlled machine ! and
utilise them in the control process. This results in a
more powerful class of controllers; indeed, we demon-
strate in Example 3.4 that the use of bursts does
broaden the conditions under which adversarial inter-
ventions can be counteracted.

Other studies on the use of feedback controllers to
overcome adversities in the operation of asynchronous
sequential machines include Murphy, Geng, and
Hammer (2002, 2003), where state feedback controllers
are developed to overcome the impact of critical races
on asynchronous sequential machines; Venkatraman
and Hammer (2006a, b, c), where state feedback
controllers are used to overcome the effects of infinite
cycles on asynchronous sequential machines; and Peng
and Hammer (2008, 2010), which considers the more
intricate problem of designing output feedback con-
trollers that overcome the effects of critical races on
asynchronous sequential machines.

When operating an asynchronous sequential
machine, one must avoid situations where two or
more input variables change value at the same time, as
this may cause an unpredictable outcome. In this
regard, it is most common to enforce fundamental mode
operation – a policy whereby only one input variable
may change value at any instant of time (e.g. Kohavi
1970). For the composite machine of Figure 1, funda-
mental mode operation implies the following.

Fact 1.1: The composite machine !c of Figure 1
operates in fundamental mode if and only if all the
following requirements are met:

(i) ! is in a stable state when C undergoes
transitions;

(ii) C is in a stable state when ! undergoes
transitions; and

(iii) the variables v and w change value only when
! and C are both in a stable state, and then
only one at a time.

In fundamental mode operation, corrective action
of the controller C can start only after the machine !
has reached a stable state, and, while C performs its
corrective action, the external inputs v and w must stay
constant. The latter is not a burdensome requirement
since, being an asynchronous machine, C acts very
quickly. In practice, asynchronous machines are
almost always operated in fundamental mode, and so
are all the machines considered in this article.

Studies dealing with other aspects of the control of
sequential machines can be found in Ramadge and
Wonham (1987) and Thistle and Wonham (1994),
where the theory of discrete event systems is investi-
gated; in Dibenedetto, Saldanha, and Sangiovanni-
Vincentelli (1994), Hammer (1994, 1995, 1996a, b,
1997) and Barrett and Lafortune (1998), where issues
related to control and model matching for sequential
machines are considered; in the references cited in these
publications, and elsewhere. Note that the references
listed in this paragraph do not take into consideration
specialised issues related to the function of asynchro-
nous machines, such as the implications of stable
states, transient states, and fundamental mode
operation.

The article is organised as follows. Section 2
reviews notation and general background. The main
discussion starts in Section 3, with the introduction of
a notion that is critical to the existence of controllers –
the notion of detectability. This notion determines the
feasibility of fundamental mode operation of the closed
loop machine, and hence determines whether adver-
sarial interventions can be counteracted in a reliable
deterministic fashion. The remaining sections of the
article employ detectability to derive necessary and
sufficient conditions for the existence of controllers
that overcome the effects of adversarial interventions.
An illustrative example is immersed throughout the
text to demonstrate notions and techniques.

2. Asynchronous sequential machines

Our discussion is within the general framework of
Murphy, Geng, and Hammer (2002, 2003), Geng and

Figure 1. The basic configuration.
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Hammer (2004, 2005), Venkatraman and Hammer
(2006a, b, c) and Yang and Hammer (2008a, b). Given
an alphabet D, denote by D! the set of all strings of
characters of D and by Dþ the set of all non-empty
strings of characters of D. For a string z:¼ z1z22Dþ
formed by the concatenation of two strings z1, z22D!,
the string z1 is called a prefix of z. The string z1 is a
strict prefix of z if neither z1 nor z2 are empty strings.

An asynchronous sequential machine ! with two
inputs is represented by a sextuple !¼ (A$B,
Y,X,x0, f, h), where A is the control input alphabet,
B is the adversarial input alphabet, Y is the output
alphabet, X is a set of n states, x0 is the initial state,
f :X$A$B!X is a partial function serving as
the recursion function and h :X!Y is the output
function of !. The machine operates according to the
recursion

xkþ1 ¼ f ðxk, uk,wkÞ,
yk ¼ hðxk, uk,wkÞ, k ¼ 0, 1, 2, . . . ,

ð1Þ

where u0, u1, u2, . . . is the control input sequence,
w0,w1,w2, . . . is the adversarial input sequence,
x0, x1, x2, . . . is the resulting sequence of states and
y0, y1, y2, . . . is the sequence of output characters. When
yk¼ xk for all integers k, i.e. when the output function h
is the identity function, the machine ! is an input/state
machine. This article concentrates on the control of
input/state machines. An input/state machine is char-
acterised by the triple !¼ (A$B,X, f ); the initial state
x0 plays no particular role in our discussion, so we will
often ignore it.

A triplet (x, u,w)2X$A$B is a valid combination
if the recursion function f is defined at it. Similarly, a
pair (x, u)2X$A or (x,w)2X$B is valid if there are
characters w2B or, respectively, u2A such that
(x, u,w) is a valid combination. A stable combination
is a valid combination that satisfies the equality
x¼ f(x, u,w), i.e. a ‘fixed point’ of f; the state x of a
stable combination is called a stable state. According
to (1), the asynchronous machine ! rests at a stable
combination until a change occurs at its control input
or at its adversarial input.

When (x, u,w) is not a stable combination, it
initiates a chain of transitions x0¼ x, x1¼ f(x0, u,w),
x2¼ f(x1, u,w), . . . , which may or may not terminate. If
this chain of transitions terminates, then there is an
integer i' 0 such that xi¼ f(xi, u,w); in such case,
(xi, u,w) is a stable combination, and xi is called the
next stable state of x with the input (u,w). If this chain
of transitions does not terminate, then the triplet
(x, u,w) is part of an infinite cycle (e.g. Kohavi 1970).
This article concentrates on machines with no infinite
cycles. Thus, in our case, every valid combination
(x, u,w) has a next stable state.

The stable recursion function s of ! is a partial
function s :X$A$B!X given, for every valid com-
bination (x, u,w), by s(x, u,w) :¼ x0, where x0 is the next
stable state of x with the input (u,w). The stable
recursion function gives rise to the stable-state machine
!js :¼ (A$B,X, s). When an input string !¼
!0!1 ( ( (!m2 (A$B)þ is applied to the machine !,
the resulting stable state is

sðx,!Þ :¼ sðsðsðx,!0Þ,!1Þ . . . ,!mÞ: ð2Þ

Of course, to preserve fundamental mode operation,
only one component of ! can change at each step.

Consider now the case where the machine ! is at a
stable combination (x, a0), where x2X and a0 2A$B,
when a change occurs in one of the input characters.
Let a2A$B be the new input pair and let x0 :¼ s(x, a)
be the next stable state of !. Assume that
this change makes the machine ! undergo a string of
i' 1 transitions x1:¼ f(x, a), x2:¼ f(x1, a), . . . , xi:¼
f(xi)1, a)¼ x0, so that xi¼ x0. Then, the string

bðx, aÞ :¼ x1x2 ( ( (xi

is the burst created by the pair (x, a). We define
b(x, a) :¼1 (the empty set) when (x, a) is not a valid
pair. As the machine ! is asynchronous, a burst occurs
very quickly (ideally, in zero time).

Consider again the machine !¼ (A$B,X, f ).
Often, not all characters of the adversarial input
alphabet B are actively being used by the adversarial
input agent. Let "*B the set of all adversarial input
characters that may actually appear at the adversarial
input of !. When " is a proper subset of B, some
characters of B are never used by the adversarial agent.
The set " is called the adversarial uncertainty.

The controller C of Figure 1 has two inputs: one is
the burst produced by the machine ! and the other is
the external input character v of the closed loop
machine. Now, letting X be state set of !, the burst of
! is a member of the set X! of strings of states. The
external input alphabet of the closed loop machine is
usually taken as the input alphabet A of the controlled
machine !. Then, the input alphabet of C is X!$A.
The controller C drives the machine !, and hence its
output alphabet is equal to the input alphabet A of !.
As a result, we can write C¼ (X!$A,A,#, "0,#, $),
where # is the state set, "0 is the initial state, # is the
recursion function, and $ is the output function of C.
Below, we denote by !cjs the stable-state machine
induced by the closed-loop machine !c of Figure 1.
The main objective of our discussion can now be stated
as follows.

Problem 2.1: Control objective: Let !¼ (A$B,X, f )
be an asynchronous input/state machine with adver-
sarial uncertainty ", and consider the closed loop
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configuration of Figure 1. Find necessary and suffi-
cient conditions for the existence of a controller C for
which the stable state closed-loop machine !cjs remains
unaffected by adversarial intervention and operates in
fundamental mode. If such a controller exists, describe
its design.

For a user, the observed behaviour of an asyn-
chronous machine is its stable state behaviour, since
transients of asynchronous machines disappear very
quickly (ideally, in zero time). Thus, when the stable
state response !cjs remains unaffected by adversarial
activity, the controller C achieves automatic protection
against adversarial intervention.

3. Detectability

True to the nature of an adversarial input or a
disturbance, no direct information is available about
the particular adversarial input character that is active
at any given time. The only a priori information
available is that the adversarial input character is a
member of the adversarial uncertainty ". When "
includes more than one character, the exact value of
the adversarial input character may be uncertain. This
uncertainty raises important issues about the operation
of the composite machine !c of Figure 1. Especially
critical is the impact of such uncertainty on funda-
mental mode operation.

Recall from Fact 1.1 that, in order to achieve
fundamental mode operation, the controller C cannot
react to an adversarial intervention until the machine !
has reached its next stable state. Thus, it must be
possible for C to determine whether or not ! has
reached its next stable state, despite uncertainty about
the adversarial input. As the controller has access only
to the burst of ! and to the control input value u, this
leads us to the following notion, which generalises a
concept of Yang and Hammer (2008a).

Definition 3.1: Let !¼ (A$B,X, f ) be an input/state
asynchronous machine with adversarial uncertainty ".
Assume that ! is in a stable combination at the state x
when the control input character switches to u. Let b be
the burst induced by the resulting stable transition.
Then, (x, u) is a detectable pair if it is possible to
determine from b and u whether or not ! has reached
its next stable state.

Needless to say, fundamental mode operation of
the composite machine of Figure 1 is possible only at
detectable pairs, since at non-detectable pairs one
cannot determine from available data whether a stable
state has been reached. The determination of whether
or not a given pair is detectable depends on the

information that is available about the adversarial
input, as we discuss next.

It is often possible to deduce more information
about the adversarial input than the a priori informa-
tion provided by the adversarial uncertainty ". One
source of such information is the current stable
combination of the machine !. Indeed, let s be the
stable recursion function of !, and assume that ! is in
a stable combination at an initial state x0 with the
control input value u. Then, the set of all adversarial
input characters compatible with this information is
given by

!ðx0, uÞ :¼ fw 2 " : sðx0, u,wÞ ¼ x0g: ð3Þ

More generally, assume that ! is in a stable
combination at the state x with the control input
character u. When x is not an initial state, further
information about the adversarial input character can
be derived from historical data about the response of the
machine! along its way to the state x. Denote by %(x, u)
the set of all adversarial input characters that are
compatible with the information currently available.
We refer to %(x, u) as the residual adversarial uncertainty
and we proceed now to calculate it. Note that at an
initial state x¼ x0, we have %(x0, u)¼!(x0, u).

Assume that the control input character of !
switches from u to the character u0, and let x0 be
the next stable state of !. In fundamental mode
operation, the adversarial input character w remains
constant during the resulting transition, which may
consist of q' 1 transient steps: x1 :¼ f(x, u0,w),
x2 :¼ f(x1, u

0,w), . . . , xq :¼ f(xq)1, u
0, w)¼ x0. Denote by

bðx, u0,wÞ :¼ x1 ( ( ( xq ð4Þ
the burst created by this transition. As the set of all
possible adversarial input characters is given by the
residual adversarial uncertainty %(x, u), the set of all
bursts that could result from switching the control
input character from u to u0 is given by

Bðx, u, u0Þ :¼ fbðx, u0,wÞ : w 2 %ðx, uÞg: ð5Þ
Example 3.2: Consider an input/state asynchronous
machine ! with the control input alphabet A¼ {a, b, c},
the adversarial input alphabet B¼ {!,&, '}, the state set
X¼ {x1, x2, x3}, the adversarial uncertainty "¼B,
and the state flow diagram of Figure 2.

Assume that ! is in a stable combination at the
initial state x1 with the control input character b. Then,
direct inspection shows that !(x1, b)¼ {&, '}. Assume
further that the control input character changes to a,
potentially starting state transitions. An examination
of Figure 2 yields b(x1, a,&)¼ x2x3 and b(x1, a, ')¼
x3x2. Thus,

Bðx1, b, aÞ ¼ fx2x3, x3x2g: ð6Þ

International Journal of Control 959
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In these terms, we obtain the following character-
isation of detectability (compare to Peng and Hammer
(2008, 2010), where output feedback controllers for
asynchronous machines with critical races are
discussed).

Theorem 3.3: Let !¼ (A$B,X, f ) be an asynchro-
nous input/state machine resting in a stable combination
at the state x, when the control input character switches
from u to u0. Let %(x, u) be the residual adversarial
uncertainty and let B(x, u, u0) be the set of bursts (5).
Then, the following are equivalent:

(i) The pair (x, u0) is detectable.
(ii) No member of B(x, u, u0) is a strict prefix of

another member.

Proof: We use the notation of (4) and (5). First, by
contradiction, assume that (ii) is not valid. Then, there
are adversarial input characters w,w0 2 %(x, u) for which
b(x, u0,w) is a strict prefix of b(x, u0,w0). Let x0 be the
stable state that ! reaches at the end of the burst
b(x, u0,w), i.e. b(x, u0,w)¼ ( ( ( x0, so that (x0, u0,w) is a
stable combination. Now, since b(x, u0,w) is a strict
prefix of b(x, u0,w0), the state x0 is reached before the end
of the burst b(x, u0, w0). Denoting by x00 the stable state
reached at the end of the burst b(x, u0,w0), we have
b(x, u0,w0)¼ ( ( ( x0( ( ( x00, so that (x0, u0,w0) is not a stable
combination in this case. Thus, when encountering
the end of the burst b(x, u0,w), there are two possibi-
lities: either (a) the adversarial input is w and ! is in a
stable combination; or (b) the adversarial input is w0,
and ! has not reached a stable combination yet.
Consequently, as the control input character u is the
same in both cases, it is impossible to tell whether or not
! is in a stable state without knowing the adversarial
input character. Hence, the pair (x, u0) is not detectable,
and (i) implies (ii).

Conversely, assume that (ii) is valid and select an
adversarial input character w2 %(x, u). Then, the burst
b(x, u0,w) is not a strict prefix of any other burst in the

set of all possible bursts B(x, u, u0). Consequently, at
the end of the burst b(x, u0,w), the machine ! has
reached the end of a transition string, and hence must
be in a stable combination. As this is valid for all
adversarial input characters w2 %(x, u), it follows that
the end state of a burst in B(x, u, u0) always indicates a
stable combination. Thus, (ii) implies (i), and our proof
concludes. œ

Example 3.4: Consider the machine ! of Example 3.2.
Assume that ! is in a stable combination with (x1, b)
when the control input switches to a. We can see from
(6) that no member of B(x1, b, a) is a strict prefix of
another member. Hence, by Theorem 3.3, (x1, b) is
detectable. However, this pair is not detectable in the
sense of Yang and Hammer (2008a), since the same
state can appear as a stable state and as a transient state
in the transitions.

So far, we have examined the possibility of
detecting the next stable state of the machine ! after
a switch of the control input character. Similar issues
arise after a switch of the adversarial input character,
as we discuss next. Consider a situation where the
machine ! is in a stable combination (x, u,w) when the
adversarial input character switches to w0; here, w0 can
be any member of the adversarial uncertainty " of the
machine !. This change has the potential of initiating
an unauthorised transition of !, a transition which the
controller C of Figure 1 must counteract. To preserve
fundamental mode operation, C must wait until ! has
reached its next stable state before taking any counter-
action. As a result, we are faced again with a situation
where the controller must determine from the burst
and the control input value whether ! has reached its
next stable state. This brings us to the following
notion.

Definition 3.5: Let !¼ (A$B,X, f ) be an input/state
asynchronous machine with adversarial uncertainty ".
Assume that ! is in a stable combination with the state
x and the control input u, when a switch of the
adversarial input character occurs. Then, the pair (x, u)
is adversarially detectable if it is possible to determine
from the control input and the burst of ! whether or
not ! has reached its next stable state. The machine !
is adversarially detectable if every valid pair (x, u) of !
is adversarially detectable.

Necessary and sufficient conditions for adversarial
detectability are closely analogous to the conditions for
detectability listed in Theorem 3.3. First, for a state x
and a control input character u, consider the set of
bursts

Baðx, uÞ :¼ fbðx, u,wÞ : w 2 "g, ð7Þ

(a, b ) (c, g )

(a, b )(a, g )

(a, g ) (c, b )

(b, b ) (b, g )

(a, b )

x3

(a, g ) 

x2

(a, a )
(b, b )
(b, g )

x1

(c, b )(c, g )

Figure 2. State flow diagram of !.
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i.e. the set of all bursts that may result from a switch of
the adversarial input character.

Example 3.6: Continuing with Example 3.2, suppose
that ! is in a stable combination at the state x1 and the
control input character a. Referring to Figure 2, the
adversarial input character can either stay at ! or
switch to one of the characters & or '; the set of all
possible resulting bursts is

Baðx1, aÞ ¼ fbðx, a,!Þ, bðx, a,&Þ, bðx, a, 'Þg
¼ fx1, x2x3, x3x2g: ð8Þ

The proof of the following statement is similar to the
proof of Theorem 3.3.

Theorem 3.7: Let !¼ (A$B,X, f ) be an asynchro-
nous input/state machine with adversarial uncertainty ".
Assume that ! is in a stable combination at the state x
with the control input character u, when a change at the
adversarial input occurs. Let Ba(x, u) be the set of bursts
(7). Then, the following two statements are equivalent:

(i) The pair (x, u) is adversarially detectable.
(ii) No member of Ba(x, u) is a strict prefix of

another member.

Example 3.8: Consider again the machine ! of
Example 3.2. From Example 3.6, we can see that no
member of Ba(x

1, a) is a strict prefix of another
member. Hence, the pair (x1, a) is adversarially detect-
able. A similar examination of the remaining stable
combinations of ! shows that they are all adversarially
detectable. Therefore, ! is an adversarially detectable
machine.

When the machine ! is adversarially detectable, the
controller C of Figure 1 can always determine whether
or not ! has reached its next stable state after an
adversarial intervention has occurred. This is accom-
plished as follows. The controller keeps track of the
latest stable state x of the machine ! and of its current
control input value u. When C detects a burst b of !
without a corresponding change of the control input, it
compares the progressing burst b to members of the set
Ba(x, u) of possible bursts. Note that the set Ba(x, u) is
known a priori, as it is determined by the known
recursion function of the machine !. By condition (ii)
of Theorem 3.7, the next stable state of ! is reached
when the progressing burst becomes equal to a member
of Ba(x, u). At that point, the controller can start to
counteract the adversarial transition without impeding
fundamental mode operation.

Note that only single-step stable adversarial transi-
tions need to be considered, since the controller C
reacts immediately after each single-step transition. All
single-step adversarial transitions are characterised by
the following matrix.

Definition 3.9: Let !¼ (A$B,X, f ) be an adversa-
rially detectable asynchronous machine with the state
set X¼ {x1, x2, . . . ,xn}, the adversarial uncertainty ",
and the stable recursion function s. Let U(xi) be the set
of all control input characters that form stable
combinations with the state xi. Then, the adversarial
skeleton matrix Ka(!,") is an n$ n matrix of zeros
and ones with the entries

Ka
ij ð!,"Þ ¼

1 if x j ¼ sðxi, u,wÞ for some

u 2 UðxiÞ and w 2 ",

0 else,

8
><

>:

i, j¼ 1, 2, . . . , n.

Example 3.10: Consider the machine ! of
Example 3.2. A brief examination of Figure 2 shows
that ! has the stable pairs (x1, a), (x1, b), (x2, a), (x2, c),
(x3, a) and (x3, c). Considering the effects of the
adversarial inputs in the figure, we obtain the following
adversarial skeleton matrix:

Kað!,"Þ ¼
1 1 1

0 1 1

0 1 1

0

B@

1

CA:

By examining the outcome of an adversarial transition,
it is often possible to reduce the uncertainty about the
adversarial input, as we discuss next.

4. Uncertainty

4.1 Uncertainty after an adversarial transition

Consider an asynchronous input/state machine
!¼ (A$B,X, f ) with adversarial uncertainty ".
Assume that ! is in a stable combination at an
adversarially detectable pair (x, u)2X$A, when a
change at the adversarial input causes ! to move to a
stable combination at the state x0. Let w0 be the new
adversarial input character. A priori, w0 can, of course,
be any member of ". However, after x0 has been
reached, we can deduce more information about the
value of w0. Indeed, let b be the burst generated by !
during this stable transition, and denote by b(x, u,w)
the burst of ! induced by a triple (x, u,w)2X$A$B.
Then, the subset

%ðx, u, bÞ :¼ fw 2 " : bðx, u,wÞ ¼ bg ð9Þ

includes all adversarial input characters that are
compatible with the available data, namely with the
starting state x, the control input character u and the
burst b. Thus, %(x, u, b) characterises the uncertainty
about the adversarial input character that is compat-
ible with the latest step data.
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4.2 Residual adversarial uncertainty

The reaction of the controller C of Figure 1 to an
adversarial transition consists of applying a string of
control input characters to the machine ! in an
attempt to undo the adversarial transition. This string
of control input characters guides ! through a
sequence of stable and detectable state transitions,
eventually ending at the state ! occupied before the
adversarial transition occurred. The controller applies
the control input string one character at a time; after
each character, the controller waits until ! has reached
its next stable state, and then applies to ! the next
control input character of the string. The resulting
chain of transitions of ! forms a single stable
transition of the closed loop machine !c; it is
completed very quickly (ideally, in zero time). The
adversarial input character remains constant during
this process (fundamental mode operation). In the
course of this chain of transitions, further information
may be gleaned about the adversarial input character.
The uncertainty about the adversarial input character
may be reduced at each step of the chain when
the outcome of the step becomes known, as we
discuss next.

Consider again the asynchronous machine
!¼ (A$B,X, f ) with the state set X¼ {x1,x2, . . . , xn},
the adversarial uncertainty ", and the stable recursion
function s. Assume that ! is at a stable combination
(xi, u0,w)2X$A$B, when a control input string
u¼ u0u1u2 ( ( ( ut2Aþ is applied, while keeping the
adversarial input fixed at the character w2". Denote
by ! :¼wju the combined input string. Suppose that !
takes ! from a stable combination with the state xi to a
stable combination with the state x j, through the stable
states x0 :¼ xi, x1¼ s(x0, u1,w), x2¼ s(x1, u2,w), . . . ,
xt¼ s(xt)1, ut,w)¼ x j. For an integer p2 {1, 2, . . . , t},
let bp(!) be the burst generated by ! on its way from
xp)1 to xp along our chain of transitions. Then, using
the notation of (9), the set of all adversarial input
characters that are compatible with the data about the
single step p is given by

%ðxp)1, up, bpð!ÞÞ ¼ fw 2 " : bðxp)1, up,wÞ ¼ bpð!Þg:
ð10Þ

Now, let %p(!) be the residual uncertainty at the end
of step p of our input string, i.e. the set of adversarial
input characters that are compatible with the entire
information available about ! at the end of step p.
This information would include data about steps 1,
2, . . . , p as well as data about the adversarial input
character that was available prior to step 1 of the
current transition chain.

Recall that our objective here is to counteract
adversarial transitions. Thus, a controlled transition

from xi to x j would be in response to an adversarial
transition from x j to xi. Denoting by ba( j, i) the burst
registered by the controller during the adversarial
transition from x j to xi, it follows from (9) that,
immediately after the adversarial transition, we can
infer that the adversarial input character belongs to
the set

%ijðu0Þ :¼ %ðx j, u0, bað j, iÞÞ: ð11Þ

Using (10), we conclude that the residual adversarial
uncertainty at the end of step p of our input string is
given by the recursion

%0ð!Þ :¼ %ijðu0Þ,
%pð!Þ ¼ %p)1ð!Þ\%ðxp)1,up,bpð!ÞÞ, p¼ 1,2, . . . ,t:

ð12Þ

This proves the following.

Lemma 4.1: The set of adversarial input characters
%p(!) of (12) forms the residual adversarial uncertainty
at the end of step p of a chain of stable transitions
induced by the input string !¼wju0u1u2 ( ( ( ut2"jAþ.

The residual adversarial uncertainty characterises
the information available to the controller about the
adversarial input character before it commences the
next step of the control input string.

4.3 The extended matrix of stable transitions

Recall the mode of operation of the composite machine
of Figure 1: the controller C activates immediately
after detecting a burst of the machine ! that has
occurred without a corresponding change at the
control input, i.e. immediately after an adversarial
transition. The controller then creates a string of
control input characters that takes ! through a chain
of stable transitions back to the state it occupied
before the adversarial transition. During this chain of
transitions (which occurs, ideally, in zero time), the
adversarial input remains constant. Thus, we con-
centrate on the effect of the control input while the
adversarial input is constant.

Let s be the stable recursion function of !, and let
" be its adversarial uncertainty. A state x0 of ! is
stably reachable from a state x in the presence of an
adversarial input character w if there is a control input
string u2Aþ such that x0¼ s(x, u,w). We construct
now a matrix that characterises the stable reachability
features of the machine !, starting with some notation
(compare to Yang and Hammer (2008a)).

For a string wju2"jAþ, where u¼ u0u1 ( ( ( uk,
define the projection $c

i : BjAþ! A onto the i-th
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control input character by setting

$c
i wju :¼ ui if i + k,

uk if i4 k,

!

i¼ 0, 1, 2, . . . . Now, let X¼ {x1,x2, . . . , xn} be the state
set of !, and consider two states xi, x j2X. The set of
all control input strings u2Aþ that take ! from a
stable combination with xi to a stable combination
with x j in the presence of the adversarial input
character w2" is

(ðw, xi, x jÞ :¼ fwju 2 "jAþ : x j ¼ sðxi, u,wÞ and

ðxi,$c
0wju,wÞ is a stable combinationg:

Aggregating over all possible adversarial input char-
acters, we obtain the set of input strings

)ij :¼
[

w2"

(ðw, xi, x jÞ * "jAþ:

Example 4.2: An examination of Figure 2 shows that,
for the machine ! of Example 3.2, we have )21¼
{'jab,&jcab}.

Next, denote by $a :BjAþ!B : (wju) ! w the
projection onto the adversarial input character.
Assume now that an adversarial transition from the
state x j to the state xi has occurred, ending at a stable
combination at xi with the control input character u0.
Then, by (11), the adversarial input character must
belong to the set %ij(u0). The set of all control input
strings that take ! back from xi to x j in the presence of
an adversarial input character from %ij(u0) is given by

R!ijð!,"Þ :¼ f! 2 )ij : $a! 2 %ijð$c
0!Þg, i, j¼ 1,2, . . . ,n:

ð13Þ

We call R!(!,") the extended matrix of stable
transitions of the machine !. Each entry of R!(!,")
is a set of strings wju2"jAþ, where u takes ! from a
stable combination with xi to a stable combination
with x j in the presence of the adversarial input
character w. In each entry, the adversarial input
characters are restricted to those that are consistent
with the starting state and the initial control input
character. The following statement is a direct conse-
quence of the construction.

Lemma 4.3: Let !¼ (A$B,X, f ) be an asynchronous
machine with adversarial uncertainty ", and let
R!(!,") be the extended matrix of stable transitions
of !. Then, the following two statements are equivalent
for all i, j¼ 1, 2, . . . , n:

(i) The entry R!ijð!,"Þ includes a string wju.
(ii) The state x j is stably reachable from the state xi

in the presence of the adversarial input
character w.

5. Detectable feedback paths

Our next objective is to determine whether the
extended matrix of stable transitions includes control
input strings that can be implemented by a feedback
controller. If so, this will allow us to construct a
feedback controller that can automatically reverse
adversarial transitions. To this end, consider an
asynchronous input/state machine !¼ (A$B,X, f )
with adversarial uncertainty " and extended matrix
of stable transitions R!(!,"). Let X¼ {x1, x2, . . . , xn}
be the state set of !, and examine a string
! ¼ wju 2 R!ijð!,"Þ. Write u¼ u0u1 ( ( ( uq and let
xp :¼ s(xi, u0u1 ( ( ( up,w) be the stable state of the
machine ! at the end of step p of the string, where
p2 {0, 1, . . . , q}, x0 :¼ xi, and xq :¼ x j. Then, the resid-
ual adversarial uncertainty %p(!) of (12) characterises
the information available about the adversarial input
character at the end of step p. Consequently, in order
for the controller to operate in fundamental mode,
the pair (xp, upþ1) must be detectable with respect to
the residual adversarial uncertainty %p(!) at all steps
p¼ 0, 1, . . . , q) 1.

Now, let bp(!) be the burst generated by ! during
its transition from xp)1 to xp. Then, the sequence of
bursts generated by the machine ! along the string of
transitions up to step p is

bp1ð!Þ :¼
1 for p ¼ 0,
fb1ð!Þ, b2ð!Þ, . . . , bpð!Þg otherwise.

!
ð14Þ

At the step p, the controller cannot distinguish between
different adversarial input characters that produce the
same string of bursts bp1ð!Þ. As a result, for all such
adversarial input characters, the controller must pro-
duce the same next control input character upþ1. This
is, of course, a fundamental feature of feedback
controllers and is a consequence of causality.

Before continuing, we need some notation. Denote
by $c :BjAþ!Aþ : (wju) ! u the projection onto the
control input string, and, for a string
!¼wju0u1 ( ( ( uq2BjAþ and an integer p' 0, denote by

!j p :¼ wju0u1 ( ( ( up for p + q,
wju0u1 ( ( ( uq for p4 q

!

the truncation to the first p characters of the control
input string.

Now, given a set of strings S*BjAþ, an integer
p' 0 and a string !2S, denote by S(!, p) the set of all
strings of S which, up to step p, have the same control
input characters and produce the same string of bursts
as !; namely

Sð!,pÞ :¼
fa 2 S : $c

0a ¼$c
0!g for p ¼ 0,

fa 2 S : $cajp ¼$c!jp

and bp1ðaÞ ¼ bp1ð!Þg for p40:

8
><

>:
ð15Þ
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Note that strings in S(!, p) may have different
adversarial input characters. The following notion is
critical to our discussion, as it singles out a structural
feature that underlies the existence of controllers that
automatically counteract adversarial transitions (com-
pare to Venkatraman and Hammer (2006c) and Yang
and Hammer (2008a)).

Definition 5.1: Let !¼ (A$B,X, f ) be an asynchro-
nous input/state machine with the state set
X¼ {x1, x2, . . . ,xn}, the stable recursion function s,
and the initial adversarial uncertainty ". Assume that
! is in a stable combination at the state xi with the
control input value u0. A subset S * R!ijð!,"Þ is a
detectable feedback path from xi to x j if the following
conditions are satisfied for every element !2S and
every integer p' 0:

(i) $c
0S consists of the single character u0;

(ii) the set $c
pþ1Sð!, pÞ consists of a single charac-

ter; and
(iii) the pair ðsðxi,!j pÞ,$c

pþ1!Þ is detectable with
respect to the residual uncertainty %p(!)
of (12).

The character u0 is called the initial control input
character of S.

As we show later, the presence of a detectable
feedback path is equivalent to the existence of a
controller that counteracts an adversarial transition. In
the meanwhile, we provide an example of the con-
struction of detectable feedback paths.

Example 5.2: Referring to the machine ! of
Example 3.2, we have seen in Example 4.2 that
)21¼ {'jab, &jcab}. Assume that an adversarial transi-
tion has occurred, taking ! from the state x1 to the state
x2 while producing the burst ba(1, 2)¼ x3x2 and ending
at the stable pair (x2, a). Then, u0 :¼ amust be the initial
control input character of a control input string that
reverses this adversarial transition and returns !
to the state x1. Using (11), we obtain %21(a)¼
%(x1, a, x3x2)¼ {'}; also, from (13), we get that
'jab 2 R!21ð!,"Þ. Now, set S :¼ {'jab}. As S consists
of a single string, conditions (i) and (ii) of Definition 5.1
are clearly valid.

Regarding condition (iii) of Definition 5.1, note
that we have to examine only the case p¼ 0, since
counting of the control input characters starts from 0
and the string 'jab is only two control characters long.
Now, (s(x2, 'jabj0), b)¼ (s(x2, 'ja), b)¼ (x2, b) and
%0('jab)¼ {'}; referring to (5), the set of bursts
B(x2, a, b) includes in this case the single member
b(x2, b, '). Thus, (x2, b) is detectable with respect to
%0('jab)¼ {'}, and hence S¼ {'jab} forms a detectable
feedback path from x2 to x1.

The next statement indicates the equivalence
between the presence of detectable feedback paths
and the existence of controllers that automatically
counteract adversarial transitions. Note that the pres-
ence of detectable feedback paths is a structural feature
of the controlled machine ! and can be determined by
an examination of the recursion function of !.
Consequently, the next statement forms the basis of a
computational procedure for ascertaining the existence
of controllers that counteract adversarial transitions.

Theorem 5.3: Let !¼ (A$B,X, f ) be an asynchro-
nous input/state machine with adversarial uncertainty ",
state set X¼ {x1, x2, . . . , xn} and extended matrix
of stable transitions R!(!,"). Assume that ! underwent
an adversarial transition from the state x j to the state xi

in the presence of the control input character u0. Then,
the following two statements are equivalent for all
i, j2 {1, 2, . . . , n}:

(i) There is a controller C(i, j) that takes ! back
from a stable combination with xi to a stable
combination with x j in fundamental mode
operation.

(ii) The entry R!ijð!,"Þ includes a detectable feed-
back path with initial control input character u0.

Proof: Assume first that (i) is valid, and let S*BjAþ
be the set of all input strings of ! that the controller
C(i, j) may generate in the process of steering ! from xi

back to x j. Then, as the transition back starts from a
stable combination of ! with the control input
character u0, we have that u0 is the initial character
of every string of S, namely u0 ¼ $c

0S; hence, condition
(i) of Definition 5.1 is valid. Further, as C(i, j) is a
feedback controller, the output character of C(i, j) is
determined by past bursts of ! and by past and present
output characters of C(i, j). In other words, an equal
burst history of ! combined with an equal output
history of C(i, j) must result in the same output
character of C(i, j), validating condition (ii) of
Definition 5.1. Finally, fundamental mode operation
of the composite machine !C(i, j) requires that all steps
through which ! is taken by C(i, j) must be detectable,
as stated in condition (iii) of Definition 5.1. Thus, all
conditions of Definition 5.1 are valid, and S is a
detectable feedback path.

Conversely, assume that condition (ii) of the
theorem is valid, and let S * R!ijð!,"Þ be a detectable
feedback path with initial control input character u0.
Define a controller C(i, j) as follows:

(a) The initial output character of C(i, j) is the
character u0.

(b) Using recursion, assume that the action of the
controller C(i, j) has been defined up to a step
p' 0, and let !2S be any string for which steps
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0, 1, . . . , p correspond to this controller action.
Then, the next character generated by C(i, j) is
the single member of the set $c

pþ1Sð!, pÞ
(condition (ii) of Definition 5.1).

By condition (iii) of Definition 5.1, all stable
transitions of ! induced by C(i, j) are detectable.
Thus, the closed loop machine !C(i, j) operates in
fundamental mode. Finally, the fact that S * R!ijð!,"Þ
implies that any string generated by C(i, j) takes the
machine ! from a stable combination with the state xi

to a stable combination with the state x j, and our
proof concludes. œ

Theorem 5.3 provides a necessary and sufficient
condition for the existence of a controller that over-
comes adversarial interventions. This condition is
stated in terms of structural features of the controlled
machine !, namely the existence of detectable feed-
back paths. Our next objective is to show that the
controller C(i, j) of the proof of Theorem 5.3 can
always be implemented with a finite state set. To this
end, denote by #Z the cardinality of a set Z. Also,
define the length of a string !¼wju2BjAþ as the
length of the control input string u, i.e. j!j :¼ juj.

Definition 5.4: Let !¼ (A$B,X, f ) be an asynchro-
nous machine with the adversarial uncertainty " and
the extended matrix of stable transitions R!(!,").
Denote * :¼ (#X)(#"). Then, the matrix of stable
transitions R(!,") is obtained from R!(!,") by
deleting all entries of length exceeding *.

The significance of the matrix of stable transitions
originates from the following fact.

Lemma 5.5: Let !¼ (A$B,X, f ) be an asynchronous
input/state machine with adversarial uncertainty " and
state set X¼ {x1, x2, . . . , xn}. Let R!(!,") be the
extended matrix of stable transitions of ! and let
R(!,") be the matrix of stable transitions. Then, the
following two statements are equivalent for all i, j2
{1, 2, . . . , n}:

(i) The entry R!ijð!,"Þ includes a detectable feed-
back path.

(ii) The entry Rij(!,") includes a detectable feed-
back path.

Proof: As Rij(!,") is a subset of R!ijð!,"Þ, it is clear
that (ii) implies (i). To prove the converse direction,
assume that there is a detectable feedback path
S! * R!ijð!,"Þ. For an element !2S!, let %p(!) be the
residual uncertainty at step p' 0. Consider the pair
(s(xi, !jp), %p(!)); here, the first member is a state of !
and the second member is a subset of ". Now, ! has
n :¼#X states. Also, by (12), the sequence %0(!), %1(!),
%2(!), . . . is a monotone decreasing sequence of subsets

of ". Therefore, for an integer p' 0, the number of
different subsets that can be candidates of %p(!) cannot
exceed #%0(!). As #%0(!)+#", it follows that the
number of possible distinct pairs (s(xi,!jp), %p(!))
cannot exceed * :¼ n(#").

Consider now a string ! ¼ wju0u1u2 . . . , uj!j 2
R!ijð!,"Þ of length j!j4 *. Then, the sequence
(s(xi,!jk), %k(!)), k¼ 1, 2, . . . , j!j, must include a
repeat, say (s(xi,!jp), %p(!))¼ (s(xi,!jr), %r(!)), where
r4 p. Remove from the control input string of ! all
the terms from pþ 1 to r, i.e. replace ! by
!0 :¼wju0u1u2 ( ( ( upurþ1 ( ( ( uj!j (or !0 :¼wju0u1u2 ( ( ( up
if r¼ j!j). Then, !0 still takes ! from a stable
combination with xi to a stable combination with x j.
Furthermore, since this process preserves the state and
the residual adversarial uncertainty at each step, all
pairs along the shorter string remain detectable.

Now, apply this process repeatedly to each member
of S! until all repetitions are eliminated from all
members; denote the resulting set by S. Then, S consists
of strings of length not exceeding *, and eachmember of
S takes ! from a stable combination with xi to a stable
combination with x j. Thus, S*Rij(!,"). Additionally,
all pairs along each member of S remain detectable and
all requirements of Definition 5.1 remain valid. Thus, S
forms a detectable feedback path, and, since
S*Rij(!,"), our proof concludes. œ

In view of Lemma 5.5, the matrix R!(!,") can be
replaced in Theorem 5.3 by the matrix R(!,"). This
assures that all computations and implementations are
finite, and it leads to the following.

Corollary 5.6: Let !¼ (A$B,X, f ) be an asynchro-
nous input/state machine with adversarial uncertainty ",
state set X¼ {x1, x2, . . . , xn}, and matrix of stable
transitions R(!,"). Assume that ! underwent an
adversarial transition from the state x j to the state xi

in the presence of the control input character u0. Then,
the following two statements are equivalent for all
i, j2 {1, 2, . . . , n}:

(i) There is a controller C(i, j) that takes ! back
from a stable combination with xi to a stable
combination with x j in fundamental mode
operation.

(ii) The entry Rij(!,") includes a detectable feed-
back path with initial control input character u0.

To summarise, we have seen in this section that the
presence of detectable feedback paths is the critical
condition for the existence of controllers that
automatically counteract adversarial interventions.
The presence of detectable feedback paths is a structural
feature of the matrix of stable transitions and can be
validated constructively, as we discuss below.
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6. Counteracting adversarial transitions

Recall that an adversarial transition is caused by a
change at the adversarial input and occurs while the
control input remains fixed (fundamental mode oper-
ation). It takes the affected machine from one stable
combination to another; as the control input character
remains fixed, it must form stable combinations with
both the initial state and the terminal state of the
adversarial transition. The control input string that
reverses an adversarial transition starts with the
control input character that was active during the
adversarial transition itself.

In formal terms, consider an asynchronous input/
state machine !¼ (A$B,X, f ) with adversarial uncer-
tainty ", stable recursion function s and state set
X¼ {x1, x2, . . . ,xn}. In an adversarial transition, the
adversarial input character switches from, say, w to w0,
while the control input character remains fixed at,
say, u. Thus, the set Uij(!) of all control input
characters that can be active during an adversarial
transition from a stable combination with x j to a stable
combination with xi is given by

Uijð!Þ :¼ fu 2 A : x j ¼ sðx j, u,wÞ and

xi ¼ sðx j, u,w0Þ for some w,w0 2 "g:
ð16Þ

Example 6.1: For the machine ! of Example 3.2,
an examination of Figure 2 yields

U21ð!Þ ¼ U31ð!Þ ¼ U32ð!Þ ¼ U23ð!Þ ¼ fag:
We introduce the following n$ n matrix.

Definition 6.2: Let !¼ (A$B,X, f ) be an asynchro-
nous input/state machine with state set X¼
{x1, x2, . . . , xn}, adversarial uncertainty ", and matrix
of stable transitions R(!,"), and let Uij(!) be the set
of control input characters given by (16). Then, the
control skeleton matrix Kc(!,") of ! is an n$ n matrix
of zeros and ones with the entries

Kc
ijð!,"Þ

¼
1 ifRijð!,"Þ includes a detectable feedback path

with initial character u for every u2Uijð!Þ,
0 else,

8
<

:

ð17Þ
i, j¼ 1, 2, . . . , n.

In view of Corollary 5.6, the control skeleton matrix
characterises all pairs of states among which adversarial
transitions can always be counteracted by an automatic
controller. This proves the following statement, which is
one of the main results of the article. (Below, inequal-
ities between numerical matrices are interpreted
entry-by-entry, and a superscript T indicates transpose.)

Theorem 6.3: Let !¼ (A$B,X, f ) be an adversarially
detectable asynchronous input/state machine with state

set X¼ {x1, x2, . . . , xn}, adversarial uncertainty ",
adversarial skeleton matrix Ka(!,"), and control skel-
eton matrix Kc(!,"). Then, the following two state-
ments are equivalent:

(i) There is an automatic controller that counter-
acts every adversarial transition of ! in funda-
mental mode operation.

(ii) (Ka(!,"))T+Kc(!,").

In view of (17), the construction of the control
skeleton matrix requires finding all pairs of states that
can be connected by detectable feedback paths. The
following algorithm describes a process for determin-
ing whether there is a detectable feedback path
between two given states. The algorithm also derives
such a detectable feedback path, whenever one exists.
Following the process described in the proof of
Theorem 5.3, the derived feedback path can be used
to construct a controller that counteracts the corre-
sponding adversarial transition.

Algorithm 1: Let !¼ (A$B,X, f ) be an asynchro-
nous input/state machine with state set X¼
{x1, x2, . . . , xn}, stable recursion function s, adversarial
uncertainty " and matrix of stable transitions R(!, ").
For a pair of integers i, j2 {1, 2, . . . , n}, let Uij(!) be the
set of control input characters (16). Given a string
!2Rij (!,"), denote by bp1ð!Þ the string of bursts
generated by the machine ! during steps 1, 2, . . . , p,
when driven by the string !. Then, for a member
u02Uij(!), the following steps yield a detectable
feedback path Su0*Rij(!,") with the initial control
input character u0, if one exists.

Step 0: Let S be the set of all members wju2Rij(!,")
with initial control input character u0. Denote
by S(u0u1 ( ( ( ut) the set of all members of S
whose control input string has the prefix
u0u1 ( ( ( ut. Also, let Sðu0u1 ( ( ( ut; bt1Þ be the
set of all members of S(u0u1 ( ( ( ut) for which
the machine ! generates the burst string bt1.
Denote by Bt

1ðSðu0u1 ( ( ( utÞÞ the set of all burst
strings that ! generates when driven
by members of S(u0u1 ( ( ( ut); here,
Bt
1ðSðu0u1 ( ( ( utÞÞ :¼1 when t¼ 0. Finally,

let jSj be the length of the longest member of
S, where jSj :¼ 0 when S¼1. (Note that,
according to Definition 5.4, we have
jSj+ n(#").)

Step 1: If S is the empty set, then go to Step 8;
otherwise, set q :¼ 0 and S0 :¼S.

Step 2: Set B :¼ Bq
1ðS0ðu0u1 ( ( ( uqÞÞ.

Step 3: Select a burst string bq1 2 B and a string
! 2 S0ðu0u1 ( ( ( uq; bq1Þ; use (12) to calculate the
adversarial uncertainty %q(!). Denote % :¼
$aS0ðu0u1 ( ( ( uq; bq1Þ.
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Step 4: If %q(!)¯ %, then replace S by the difference
set S n S0ðu0u1 ( ( ( uq; bq1Þ and return to Step 1.

Step 5: If q¼ jS0j and B¼1, then go to Step 8.
Step 6: Perform the following operations: select a

character uqþ12$c
qþ1S

0ðu0u1 (((uq;bq1Þ; remove
from S0 all elements (2S0ðu0u1 (((uq;bq1Þ for
which $c

qþ1( 6¼uqþ1; replace B by the difference
set Bnfbq1g.

Step 7: If B¼1, then replace q by qþ 1 and go to
Step 2; otherwise, go to Step 3.

Step 8: Set Su0 :¼S0 and terminate the algorithm.

An examination of the flow of Algorithm 1 shows
that the following is true.

Proposition 6.4: Let !¼ (A$B,X, f ) be an asynchro-
nous machine with state set X¼ {x1,x2, . . . , xn}. For a
pair of integers i, j2 {1, 2, . . . , n}, assume that ! under-
went an adversarial transition from x j to xi with control
input character u02Uij(!), where Uij(!) is given
by (16). Finally, let Su0 be the outcome of Algorithm 1.
Then, the following two statements are equivalent.

(i) There is a detectable feedback path from the
state xi to the state x j with initial control input
character u0.

(ii) Su0 6¼1.

Furthermore, when not the empty set, Su0 forms a
detectable feedback path from xi to x j with initial control
input character u0.

We demonstrate now the use of Algorithm 1.

Example 6.5: Assume that the machine ! of
Example 3.2 has experienced an adversarial transition
from the state x2 to the state x3. We search for a
detectable feedback path back from x3 to x2. By
Example 6.1, we have U32(!)¼ {a}, so the only
possible initial control input character is u0¼ a.
Apply now Algorithm 1:

Step 0: An examination of the transition diagram of
! (Figure 2) yields S¼ {&jac,&jaba}.

Step 1: Clearly, S 6¼1, so we set q :¼ 0 and S0¼S.
Step 2: As q¼ 0, we obtain B ¼ B0

1ðS0ðaÞÞ ¼1.
Step 3: Since B¼1, the only burst in B is b01 ¼1,

and we have S0ða; b01Þ ¼ S0ða;1Þ ¼ S0. Select
the string ! :¼&jac2S0; from (12), we obtain
%0(!)¼ &. Note that %¼$aS0(a; 1)¼ {&}.

Step 4: Since %0(!)* %, we advance to Step 5.
Step 5: Since q¼ 0 6¼ jS0j¼ 3, we advance to Step 6.
Step 6: As $c

1S
0ða;1Þ ¼ fc, bg, we can select the next

character of the control input string u1 :¼ c.
Further, since $c

1&jaba ¼ b 6¼ c, we remove
&jaba from S0, so that S0¼ {&jac}. Note that
we still have B¼1.

Step 7: Since B¼1, set q¼ 1 and return to Step 2.

Repeating the algorithm steps as necessary leads to the
result Su0¼ {&jac}. Since Su0 6¼1, the latter forms a
detectable feedback path from x3 to x2 according to
Proposition 6.4.

Repeated use of Algorithm 1 allows us to build the
control skeleton matrix Kc(!,") of the machine !.
Then, we can use Theorem 6.3 to determine whether or
not all possible adversarial transitions of the machine
! can be counteracted by an automatic controller. This
resolves the problem of automatically counteracting
the effects of adversarial interventions on asynchro-
nous input/state machines. We conclude our discussion
with an example of controller construction.

Example 6.6: Consider again the machine !
of Example 3.2. By Example 6.5, we have
Kc

32ð!,"Þ ¼ 1. Similarly, applying Algorithm 1 to the
remaining state transitions, we obtain the control
skeleton matrix

Kcð!,"Þ ¼
1 0 0
1 1 1
1 1 1

0

@

1

A:

The adversarial skeleton matrix Ka(!,") of the
machine ! was calculated in Example 3.10.
Comparing the two matrices, we obtain (Ka(!,
"))T+Kc(!,"). Hence, by Theorem 6.3, there is a
controller that automatically counteracts every adver-
sarial transition that might occur in !.

Controller construction follows the process
described in the proof of Theorem 5.3. As an example
of this process, we construct C(2, 1), a controller that
automatically counteracts adversarial transitions from
x1 to x2. In view of Figure 1, the controller C(2, 1) is an
asynchronous machine with two inputs – one receives
state bursts of the machine ! and the other receives the
external input character v. Thus, the input alphabet of
C(2, 1) is X!$A. As C(2, 1) controls the machine !, its
output alphabet is the input alphabet A of !, and we
can write C(2, 1)¼ (X!$A,A, #, "0, #, $), where # is
the state set, "0 is the initial state, # :#$X!$A!# is
the recursion function, and $ :#$X!$A!A is the
output function.

From Figure 2, it follows that an adversarial
transition from the state x1 to the state x2 can occur
only in the presence of the control input character
u0¼ a. The external input character v of the closed loop
machine of Figure 1 is then a during the adversarial
transition, since the controller’s only purpose here is to
counteract adversarial transitions. For the same
reason, a is the initial control input character produced
by C(2, 1).

We turn now to the construction of the recursion
function and of the output function of C(2, 1).
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Initially, C(2, 1) is at the state "0. The controller
remains in its initial state until it detects a stable
combination with the pair (x1, a), so we set

#ð"0,x, uÞ :¼ "0 whenever ðx, uÞ 6¼ ðx1, aÞ:

While at the initial state "0, the controller is transparent
and applies to ! the input character it receives:

$ð"0,&, uÞ :¼ u for all & 2 X! and all u 2 A:

Next, C(2, 1) moves to the state "1 upon detection of a
stable combination with the pair (x1, a), in preparation
for a potential adversarial transition of ! from x1 to
x2. To implement this move, set

#ð"0, x1, aÞ :¼ "1;

at this point, C(2, 1) continues to apply the input
character a to !, so we set

$ð"1, x1, aÞ :¼ a:

In the course of an adversarial transition from x1 to x2,
the machine ! generates the burst x3x2 (see Figure 2;
the adversarial input switches from ! to '). Upon the
detection of this burst, C(2, 1) moves to the state "2.
To this end, set the recursion function to

#ð"1, x3x2, aÞ :¼ "2:

Now, use the detectable feedback path {'jab} of
Example 5.2 to undo the adversarial transition and
return the machine ! to the state x1. As C(2, 1) already
applies the initial control input character a, it only
remains to apply the control input character b to ! to
complete implementing this detectable feedback path.
To this end, set

$ð"2,&, aÞ :¼ b for all & 2 X!:

An examination of Figure 2 shows that this control
input character returns ! to the state x1 with the burst
x1. At this point, the controller C(2, 1) has completed
counteracting the adversarial transition; we can leave it
in its last state:

#ð"2,&, aÞ :¼ "2 for all & 2 X!:

This completes the construction of the controller
C(2, 1). Similarly, controllers can be constructed to
automatically counteract each possible adversarial
transition of the machine !. These controllers can
then be combined into a single controller that auto-
matically counteracts any adversarial transitions of !
(see Yang and Hammer (2008a) for a description of the
process of combining controllers). œ

7. Conclusion

To summarise, we have provided necessary and suffi-
cient conditions for the existence of state feedback
controllers that automatically counteract the effects of
adversarial interventions on the operation of asyn-
chronous sequential machines. These conditions are
presented in terms of an inequality between the entries
of two numerical matrices of zeros and ones, matrices
that are derived directly from data about the machine
that must be protected. Whenever such controllers
exist, an algorithm for their design was also put
forward.

In general terms, the existence of controllers that
counteract adversarial interventions depends on cer-
tain reachability and detectability properties of the
controlled machine. The ability of a controller to detect
adversarial interventions is enhanced in this article by
the use of bursts. This enhanced ability of detection
strengthens the capabilities of controllers to automat-
ically counteract adversarial interventions.
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