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ABSTRACT 

The problem of reducing the effects of traffic uncertain-
ties on the efficiency of digital communication networks is 
considered. The emphasis is on maximizing the efficiency 
of high capacity communication networlcs, subject to traffic 
uncertainties with unmodeled statistics. The note concen-
trates on the optimal selection of the data admitted into the 
network. 

1. INTRODUCTION 

A discrete ( or digital) communication network is used to 
transmit digitized data, computer files, digitized phone 
calls, digitized video signals, and other forms of discrete 
information To improve the efficiency of a discrete com-
munication network, traffic control algorithms are used to 
direct the data traffic through the network. The present note 
deals with the development of traffic control algorithms 
that aim to maximize the amount of data passing through 
the network. 

The traffic entering a digital communication network is 
random and varied in nature. Large portions of the traffic 
lack comprehensive statistical models, as the characteristics 
of their random nature have not been fully validated. 
Among the important classes of network traffic that lack 
comprehensive statistical models, one finds the substantial 
class of digitized video and multimedia data, as well as 
other classes (e.g., ECKBERG (1979], DAIGLE and 
LANGFORD [1986], HUI [1988), PAXSON and FLOYD 
[1994), and SCHWARTZ [1996]). 

The lack of comprehensive statistical models diminishes 
the benefits of using filtering techniques for the design of 
traffic control algorithms. It gives rise to a need to develop 
traffic control methodologies that do not depend on detailed 
statistical models of the traffic. The present note addresses 
this need by introducing a traffic control theory that does 
not require detailed statistical models of network traffic. 
This theory is analogous to the theoiy of robust control, 
which helps overcome the effects of unmodeled uncertain-
ties on control systems. 

While the theoiy of robust control is intended to deal 
mainly with relatively small uncertainties, traffic control 

must deal with large uncertainties as well. To emphasize 
this distinction, we replace the adjective "robust" by the 
adjective "sturdy" in the present conte~ and refer to our 
current topic as sturdy traffic control. Sturdy traffic control 
deals with the development of traffic control algorithms 
that operate under the influence of large unmodeled uncer-
tainties, characterized by amplitude bounds. 

When discussing traffic control algorithms, one must 
address the issue of data loss. Sturdy traffic control com-
pletely prohibits data loss. In contrast, statistical traffic 
control techniques often incur some data loss during rare 
traffic events (e.g., ATKINS [1980], GOLESTANI [1991], 
and CHANG [1994 ]). Notwithstanding its prohibition of 
data loss, sturdy traffic control leads to full network utiliza-
tion in many common situations. This comes to show that 
data loss is not a "necessaiy evil" along the path to high 
network efficien:y. 

The techniques discussed in the present note are intended 
for large capacity networks. In fact, we concentrate on net-
work efficiency at the limit, when the volume of traffic 
tends to infinity. This leads us to the notion of asymptotic 
efficiency. Asymptotic efficiency is pertinent to the large 
capacity networks (called backbones) currently used for 
long distance digital communication. An important advan-
tage of using asymptotic efficiency as the criterion for net-
work optimiz.ation is that it leads to scalable traffic control 
algorithms. These algorithms adjust easily as a communi-
cation network expands. 

This note is an extended summary and refinement of 
HAMMER [2000a]. It concentrates on the process of opti-
mizing the selection of the data allowed into a network. The 
control of the data flow within the network is further dis-
cussed in HAMMER [2000b and 2001]. 

1.1 Some tennioology. 

The discrete elements transmitted through a digital 
communication network are called cells. Most often, all 
cells of a given network contain the same volume of data 
(i.e., the same number of bits; e.g., ATM FORUM [1997]). 
In such case, the volume of data passing through the net-
work is determined by the number of cells. For the sake of 
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simplicity, we shall restrict our discussion exclusively to 
such networks. 

A call is a collection of cells that form a complete data 
record. Each cell carries information that identifies the call 
to which it belongs, as well as the relative position of the 
cell's data within the call's record. Whence, it is not neces-
sary to keep the cells in a particular order as they pass 
through the network. The cells can be put back into correct 
order at the destination 

The calls entering a network are divided into different 
categories called call classes. Digitized phone calls, com-
puter file transfers, and digitized video signals are examples 
of call classes. Each call class has its own transmission-
fidelity requirements. For example, classes of real-time 
signals, like digitized video and digitized phone calls, ex-
hibit high sensitivity to transmission delays and jitter. On 
the other hand, computer data file transfers are relatively 
insensitive to transmission delays. 

The transmission-fidelity requirements of a class form its 
service requirements. The most common seIVice require-
ment specifies the maximal delay ( or jitter) a cell of the 
class may experience while passing through the network. 
Detailed descriptions of seIVice requirements are given in 
A 1M FORUM [1997] (see also HANDEL, HUBER, and 
SCHRODER [1994]). 

We shall use the term network capacity to indicate the 
largest number of cells the network can transmit during 
each unit of time. Inasmuch as calls enter the network from 
independent sources having random transmission rates, the 
number of cells entering the network may exceed network 
capacity. When this occurs, we have network congestion. 
An important role of traffic control algorithms is to resolve 
conditions of network congestion Sturdy traffic control 
algorithms resolve network congestion without incurring 
cell loss. 

2.BASICS. 

We represent the flow of cells through a network by a 
sequence of integers. An element of the sequence corre-
sponds to the number of cells that flow through a point of 
the network during a specified inteIVal of time A > o. In 
particular, for an integer k :::: 1, the symbol vk indicates 
the number of cells that flow through the point v of the 
network during the time interval ((k-l)A, ka]. The inteIVal 
((k-l)A, kA] is referred to as step k. Note that for a net-
work turned on at the time zero, the first significant step is 
k = 1. The length of the time inteIVal fl is selected to be 
short compared to network time constants and delays. This 
interpretation allows us to regard the network as a discrete 

time system acting on sequences of integers. The following 
diagram represents the main elements of a netwodc. 

(1) 

Here, w represents the pool of calls requesting admission 
into the network, and A represents the network gate. The 
gate implements the call admission process: it selects the 
calls that are allowed to enter the network. The symbol l: 
represents the short network link connecting the source to 
the backbone, while E represents the backbone, a large 
capacity network segment The controller C controls the 
flow of cells from the source, and is called the source con-
troller. The flow of cells into the backbone is controlled by 
the router controller P. Both C and P contain buffeIS that 
can temporarily store cells when the incoming cell flow rate 
exceeds network capacity. Finally, T represents the desti-
nation of the cells. The operation of A, C, and P is con-
trolled by the traffic control algorithm. 

The signals v, u, y, z, and s of diagram ( 1) are se-
quences of non-negative integers that represent the cell 
flow through the network. Their values at (the end of) step 
k are vk, uk, Yk, zic, and sk, respectively. Assuming the 
network is turned on at the time zero, we take k 1. The 
network link l: induces a delay of K steps, so that 

Yk = Uk-le' k = 1, 2, ... 

Let cl> > O be the maximal number of cells that can pass 
through the backbone during a time interval of length A. 
We call cl> the capacity of the backbone. Then, the back-
bone input sequence z must satisfy the requirement 

0 :5 Zk :5 cJ>, k = 1, 2, ... 

In practice, l: represents a large number of links feeding 
the backbone, and the combined capacity of these links 
usually exceeds the backbone capacity. Consequently, we 
shall assume that l: does not impose a capacity limitation 
on the network. We shall concentrate on the optimization of 
backbone use, to best utilize the most costly part of the 
network. 

2.1 The calls. 

We consider calls of finite duration T :::: 1 whose flow 
rates are bounded by piecewise constant sequences. Each 
call extends then over the interval (1, T]. This interval is 
called the call cycle. 

The integer T may represent a common multiple of the 
durations of all calls of interest, so all calls become com-
pauble with the call cycle. In the case of very long calls, T 



may indicate a convenient breakpoint of a call. The interval 
[T+ 1, 2T] is the second call cycle, and so on. 

Given an integer q 1, partition the call cycle into q 
disjoint sub-intervals I 1 := [1, ti], I2 := [t 1 +1, ti], ... , Iq := 
[tq_1+ 1, T], where t1 = T when q = 1. The sub-intervals 
11, ... , Iq are called segments. Let \ be the number of 
steps included in the segment Ii. Now, given a list of q 
integers cp(l), cp(2), ... , cp(q), define the piecewise constant 
sequence 

0 for k~O 
cp(l) for 1 ~k~t1, 
cp(2) for t1+I ~k~t2, 

(2) <f>k:= ... , 
cp(q) for tq-l +1 k T, 
0 for T+l ~k. 

The integers t1, t2, ... , T are called the switching times of 
the sequence. Note that by using segments of length I, 
every sequence with finite support can be represented in the 
form(2). 

A call c is represented as a sum of two piecewise con-
stant sequences over the partition {11, ... , Iq}: 

C = X +'U. 
The sequence X represents the nominal flow rate, whereas 
'U represent an uncertainty about the flow rate of the call. 
The sequence 'U may vary from one sample of the call c 
to another. The only a-priori information available about u 
is an amplitude bound p O: 

0 ~'U(j) p,j = 1, 2, ... q. 
No statistical model of the uncertainty is presumed. 

The calls attempting entty into the network are classified 
into m service classes c 1, ... ,cm.Each class has its own 
nominal waveform and uncertainty characteristics. A call of 
the class ci will be denoted by 

(3) cf = xi + ui, 

where xi represents the nominal part, and ui represents 
the uncertain part. At the step k, the value of the call is 
written as ct = xi + ~; ~e valu~ of th<? call ci on the 
segment Ij is written as c1(j) = x1(j) + u 1(j). We shall as-
sume that 

ct > O for at least one k e [1, T], 

i.e., that none of the calls is identically zero. 
The term call pool refers to the population of calls 

awaiting admission into the network. We assume that the 
peak flow capacity required to transmit the entire call pool 
exceeds backbone capacity; otherwise, all waiting calls can 

be transmitted directly, and there is no place for optimiz.a-
tion. The optimization process depends, among other fac-
tors, on the composition of the call pool. To simplify nota-
tion, we assume that the admission process is performed at 
the compensator P, and that admitted calls start entering 
the backbone at the time step k = 1. 

3. ASYMPTOTIC EFFICIENCY AND COMPLETE 
FAMII..IES 

Asymptotic efficiency is a measure of backbone utiliza-
tion in the limit, as backbone capacity tends to infinity. The 
term "efficiency" refers to the fraction of backbone capacity 
that is filled by the flow of cells. For a large capacity back-
bone, asymptotic efficiency of 1 indicates that the fraction 
of unused backbone capacity is ~lose to zero. The notion of 
asymptotic efficiency leads to traffic control algorithms that 
are scalable in the sense that their basic mode of operation 
does not change when backbone capacity is increased. 

Optimization of the backbone flow involves two proc-
esses: (i) selection of the calls that are admitted into the 
network, and (ii) reshaping the waveforms of the admitted 
calls by buffering. The present note concentrates on call 
admission, while HAMMER [2000b and 2001] address the 
issue of call reshaping. 

To gain insight into the call admission process with-
out undue complication, we adopt at first the simplifying 
assumption that the call waveforms are deterministic, 
namely that ui = O in (3). 

Another preliminary simplifying assumption we make is 
that there are no restrictions on the call supply. In practical 
terms, this means that for each call class ci, i = 1, ... , m, 
the number of calls contained in the call pool is larger than 
the number of calls that can be simultaneously transmitted 
through the backbone. 

The final simplifying assumption we make is that no 
buffering is performed. Then, backbone efficiency is con-
trolled entirely through the call admission process, by se-
lecting the calls that best fill the backbone. Note that an 
analysis of flow without buffering can be regarded as an 
analysis of the output of the compensator P, after all buff-
ering has been completed. Accordingly, this preliminary 
discussion will lead us to a cbaracteriz.ation of the optimal 
output of the compensator P. The issues of limited call 
supply, buffering, and call uncertainties are addressed later 
in this note and in HAMMER [2000b, 2001 ]. 

Let ai 2: O be the number of calls of the class ci that 
have been admitted into the backbone. Then, the total Dlllll-



ber of cells injected into the backbone at the step k is 
given by 

zk= ~I °'i4· 
The admission process determines the integers a1, ... , <Xm· 
We refer to a 1, ... , <Xm as the call populations. For an un-
limited call pool, there is no restriction on the selection of 
the call populations, other than the backbone capacity. 

Letting q> be the backbone capacity, it follows that the 
maximal number of cells the backbone can carry during the 
call cycle [I, T] is given by Tq>. For a backbone capacity 
of q>, let a1 ((j>), ... , <Xm(<I>) be the call populations admitted 
into the backbone; the total number of cells entering the 
backbone at the step k is 

zk(<I>) =~1 <Xj(<l>)4 ci,. 

We refer to z(<I>) as the traffic control algorithm; it is a rule 
that assigns populations a1 (<I>), ... , <Xm(<I>) to each backbone 
capacity <I> 2: 1. The efficiency fl(z(cl>)) of the traffic control 
algorithm z( <I>) is defined by 

T 
~Izk(<I>) 

(4) 11(z(<I>)): Tel> 

Clearly, the efficiency is simply the fraction of backbone 
capacity being utilized by the traffic control algorithm z((j>), 
and we have 

0 fl{z(<I>)) 1. 
The asymptotic efficiency 1\(z) of the traffic control algo-
rithm z(·) is defined by 

Tloo(z) := limq,-+oo fl(Z((j>)). 

The asymptotic efficiency approximates the efficiency of 
the traffic control algorithm z(cl>) when executed on back-
bones with large capacity ci,. Maximization of the asymp-
totic efficiency is the basic optimization criterion in our 
discussion. 

Now, let F = {c1, ... , c111} be the family of call classes 
approaching the backbone. We say that the family F is 
complete if there are integers . a 1, ... , <Xm 2: 0 such that the 
linear combination ~I aic 1 = c is a non-zero constant 
function over the interval [I, T]. The following statement 
characterizes the basic requirement for achieving asymp-
totic efficiency of I (HAMMER [2000a]). 

(5) THEOREM. Let F := {c 1, ... , cfD} be a family of 
piecewise constant call classes over the partition {11, ... , 
Iq}. Then, the following two statements are equivalent. 

(i) There is a traffic control algorithm with asymptotic effi-
ciency of I forthefamily F. 

(ii) The family F is complete. • 

In other words, asymptotic efficiency of I is possible if 
and only if the calls entering the backbone constitute a 
complete family. Complete families are the only families of 
call classes capable of utilizing the entire capacity of large 
backbones. HAMMER [2000a] contains some algorithms 
that generate complete families of calls. Here is an example 
of waveforms for a complete family of 4 calls. 

cl 

C 2 

C s 

C " 
. . . . . . . . 

11 12 Is 1, 

5. INCOMPLEIB CALL FAMILIES. 

Consider a family F = {c1, ... , cfil} of call classes over 
the partition {11, ... , Iq} of the 4Iterval [I, T]. Let <Xi be 
the number of calls of the class c1 that enter the backbone. 
The total number of cells 7ic entering the backbone at the 
step k is 

(6) 7ic := lf:1 <lj4 , k = 1, ... , T. 

The amplitude A(z) of the stream z is 
A(z) := max {zk: k = 1, ... , T}. 

As cell loss is disallowed, we require A(z) q>, where q> is 
the backbone capacity. The relative efficiency 11r<a1, ... , 
<Xm) of the cell stream (6) is defined by 

T 
~12t 

(7) 11r<a1, ... , <Xm) := TA(z) , A(z) > 0. 

Clearly, 
O ~11r<a1, ... , <Xm) 1. 

Comparing with ( 4 ), we have 
0 fl(Z) flr(<XJ, ... , <Xro), 

so that the efficiency cannot exceed the relative efficiency. 
In the special case when A(z) = cl>, we get 1\(Z) = 11r<a1, ... , 
CXm). We denote the maximal relative efficiency by 'lli(F), 
so that 



11i(F) := sup {11r(a1, ... , <Xm): a 1, ... , <Xm e z+}, 

where z+ is the set of all non-negative integers. The next 
statement shows that there is a traffic control algorithm that 
achieves maximal relative efficiency (HAMMER (2000a]). 

(8) THEOREM. Let F = { c 1, ... , <fil} be a family of call 
classes over the partition {I1, ... , Iq}, where none of the call 
classes c 1, ... , is identically zero. Let 11 ;(F) be the 
maximal relative efficiency of the family F. Then, the fol-
lowing are true. 

(i) There are finite integers ai, ... , a:i O such that 
11i(F) = 11r<ai, ... , <Xrii ). 
(ii) The maximal relative efficiency 11i<F) , as well as the 
call populations ai , ... , <Xiii that yield it, are determined 
by the solution of a linear programming problem. • 

The specifics of the linear programming problem that 
yields call populations for maximal relative efficiency are 
descnbed in HAMMER [2000a]. 

There is an intimate connection between relative effi-
ciency and asymptotic efficiency. In fact, as the next state-
ment indicates, the maximal asymptotic efficiency associ-
ated with a family F = { c 1, ... , cm} is equal to its maximal 
relative efficiency (HAMMER [2000a]). 

(9) THEOREM. Let F = { c1, ... , cm} be a family of non-
empty call classes transmitted over a backbone of capacity 
cj>. Let z* := lf= 1 ci be a flow that achieves maximal 
relative efficiency 11 i(F) for the family F. Then, the fol-
lowing are true. 

(i) For any flow z of the family F, the efficiency satisfies 
11(z) 11:(F). 

(ii) For an integer P > 0, define the traffic flow zp := Pz*, 
and let 11* := limp-+oo 11(,). Then, 11* is the maximal as-
ymptotic efficiency, and 11 = 11 ~(F) . • 

As Theorem 9 indicates, the flow that achieves maximal 
asymptotic efficiency consists of fixed proportions of the 
call classes. These proportions are characterized by the in-
tegers ai, ... , <Xiii of Theorem 8. The flow that achieves 
maximal asymptotic efficiency is obtained through a scal-
able process, by using integer multiples of the basic flow 
package z* = ai c1 + ... + <Xrii_ cffi. Thus, when backbone 
capacity is increased, one only needs to scale the flow up-
ward, leaving the consistency unchanged. 

Of course, in order to achieve the maximal asymptotic 
efficiency with the family F, the pool of calls waiting for 
admission into the backbone must contain a sufficient num-
ber of calls of (?3Ch class: there must be at least Pa! calls 
of the class c1, for each i = 1, ... , m, in the notation of 

Theorem 9. The next section addresses situations where this 
requirement is not met 

6. INCOMPLEIB CALL FAMILIES WITH LIMITED 
CALL SUPPLY. 

We tum now to the more common situation, where the 
supply of calls in each class may be limited. Let F = { c 1, 
... , cm} be a family of call classes to be transmitted through 
a backb~ne of capacity cj>. Let Pi the number of calls of the 
class c1 that are in the call pool at the initial time. We call 
PI, ... , Pm the call pool populations. When considering the 
asymptotic case as cj> approaches infinity, one has to let the 
call pool populations approach infinity as well. To this end, 
define the ratios 

Pi . I 
Pi := cf ' I = ' ... , m, 

called the call pool parameters. We assume that the call 
pool parameters remain constant as cj> -4 oo. In this way, the 
proportions among the different call populations, as well as 
their relation to the backbone capacity, remain constant. 
The call pool parameters are specified system parameters, 
characterizing the demand on the network. We assume, of 
course, that not all call parameters are zero. Clearly, any 
flow z := lf= 1 d through the backbone must satisfy 

<li ~Pi= Piel>, i = 1, ... , m. 
When one attempts to transmit all calls of the call pool 

simultaneously through the backbone, one obtains the flow 
7iJ = ~I Piel></ The amplitude of this flow is A(z0) = 
cj>A(lf= 1 Pic1). In order for the backbone optimization 
problem to be meaningful, one must have A(ze) > cj>; oth-
eIWise, all waiting calls can be transmitted simultaneously, 
and there is no place for optimization. This yields the con-
dition 

(10) A(lf= 1 PiCi) > 1. 

We regard (10) as a constraint on the call pool parameters. 
Recall that A(z) denotes the amplitude of a flow z. Note 
that by (7), the maximal relative efficiency 11; that can be 
achieved under the present conditions is 

11i := sup {11r(a.1, ... , Om) : <Xj_ S Pi, A(z) S cj>, <li E z+, i = 
1, ... , m}. 

A call family F = {c1, ... , cffi} is linearly independent if 
the equation lf= 1 3i2 = O (the constant zero function over 
(1, T]) is valid only when ai = 0, i = 1, ... , m. This defini-
tion conforms to the usual notion of linear independence. In 
practice, most call families are linearly independent, since 
each call class usually represents a completely different 
application (e.g., telephony and video). We can list now the 



basic characteristics of a flow that maximizes asymptotic 
efficiency when the call supply is restricted (HAMMER 
[2000a]). 

(11) 1HEOREM. Let F = {c1, ... , c111} be a family of line-
arly independent call classes over the partition {I 1, ... , Iq}, 
and let Pt, ... , Pm be the call pool parameters. Then, there 
is a list of integers o.i, ... , CXrit 0 for which the following 
are true. 

(i) For the traffic flow z~ := f3<lf=1 a! ch, where f3 > 0 is 
an integer, let 11 * := lim~~ 11(z~)-Then, 11 * is the maxi-
mal asymptotic efficiency achievable with the family F 
and the call pool parameters Pt, ... , Pm· 
(ii) The integers o.i, ... , CXrit can be obtained from the solu-
tion of a linear programming problem. • 

As Theorem 11 indicates, the optimal flow is obtained by 
usin[ multipJe copies f3z* of the basic call "package" z* 
:= lf~1 a.f c1. This provides a scalable solution to the back-
bone optimization problem under call supply restrictions. A 
detailed description of a method for calculating the integers 
a.r, ... , CXrit is provided inHA.WdER [2000a]. 

To summarize, we have taken in this note a functional 
approach to the issue backbone optimization, viewing it as 
a global optimization problem. In comparison, the classical 
approach to admission control tilts more toward an instant-
by-instant evaluation of the network load (compare to 
DECINA and TONIATTI [1990], RATHGEB [1991], 
CCIIT [1992]). 

7. REFERENCES 

J.D. ATKINS, [1980], "Path control: the transport network 
of SNA", IEEE Transactions on Communications, COM 
28, 4, pp. 527-538. 

ATM FORUM, [1997], "Technical specifications: ap-
proved ATM forum specifications." 

CCITT, [1992], "Traffic and congestion control in 
B-ISDN, I.", CCIT Study Group XVIIl, Geneva. 

C.S. CHANG, [1994], "Stability, queue length, and delay 
of deterministic and stochastic queueing networks." IEEE 
Trans. on Automatic Control, AC 39, 5, pp. 913-931. 

J.N. DAIGLE and J.D. LANGFORD, [1986], "Models for 
analysis of packet voice communication systems", IEEE 
JSAC, SAC-4, 6, pp. 847-855. 

M. DECINA and T. TONIATII, [1990], "On bandwidth 
allocation to bursty virtual connections in A TM networks", 
Proceedin~ of the IEEE ICC, April 1990, Atlanta, GA. 

A.E. ECKBERG, Jr., [1979], "The single server queue with 
periodic arrival process and deterministic service times", 
IEEE Trans. on Communications, COM-27, 3, pp. 
556-562. 
S.J. GOLESTANI, [1991], "A framing strategy for con-
gestion management", IEEE JSAC, SAC 9, 7, pp. 
1064-1077. 

J. HAMMER, [2000a] , "Sturdy control of discrete commu-
nication networks, part I: admission control", submitted for 
publication; [2001] "Asymptotic efficiency and buffer op-
timization in discrete communication networks", submitted 
for publication; [2000b] "Sturdy control of discrete com-
munication networks, part Il: call reshaping", submitted for 
publication. 

R. HANDEL, M.N. HUBER, and S. SCHRODER., [1994], 
"A TM networks, Concepts, Protocols, Applications", sec-
ond edition, Addison-Wesley, Wokingham, England. 

J.Y. HUI, [1988], "Resource allocation for broadband net-
works", IEEE JSAC, SAC 6, pp. 1598-1608. 

V. PAXSON and S. FLOYD, [1994], "Wide area traffic: 
the failure of poisson modeling", Proceedings of SIGCOM, 
pp. 257-268, August 1994, London. 

E.P. RATHGEB, [1991], "Modeling and performance 
comparison of policing mechanisms for A TM networks", 
IEEE JSAC, SAC 9, 3, pp. 325-334. 

M. SCHWARTZ, (1996], "Broadband integrated net-
works", Prentice Hall, N.J. 


