
Adaptive Control of Asynchronous Sequential
Machines: An Algebraic Formulation

Jung-Min Yang ∗ Tan Xing ∗∗ Jacob Hammer ∗∗

∗Department of Electrical Eng., Catholic University of Daegu
Gyeongsan, Gyeongbuk, 712-702, Korea

∗∗Department of Electrical and Computer Engineering, University of
Florida, Gainesville, FL 32611-6130, USA. (e-mail: hammer@mst.ufl.edu)

Abstract: An algebraic framework is developed and utilized to achieve adaptive control of asynchronous
sequential machines with unknown transitions. The framework yields adaptive state feedback controllers
that acquire data about unknown transitions during normal operation and utilize this data to improve
closed-loop performance.

1. INTRODUCTION

Asynchronous sequential machines, or clockless logic circuits,
are employed in high speed computing, in parallel computing,
in modeling of signaling chains in molecular biology (Hammer
[1994, 1995]), and in other applications. We examine the con-
trol of asynchronous machines that are not fully described due
to incomplete characterization, malfunctions, or errors (e.g.,
Shieh, Wey, and Fisher [1993]).

An indeterminate transition of a machine is a deterministic
transition with unknown outcome. Once tested, an indetermi-
nate transition becomes a determinate transition – a determinis-
tic transition with known outcome. An indeterminate machine
is a deterministic machine with indeterminate transitions. We
develop algorithms to acquire data about indeterminate tran-
sitions without hindering user experience. A controller that
collects and uses such data is an adaptive controller.

C

xu

!

cΣ

ω

Fig. 1. Closed Loop Configuration

In Figure 1, Σ is an indeterminate asynchronous machine and
C is another asynchronous machine serving as an adaptive
controller; Σc denotes the closed loop.

Asynchronous machines have stable and transient states. A
machine lingers at a stable state until an input change occurs; it
passes a transient state quickly (ideally, in zero time). Transient
states do not affect user experience, but controllers can record
transients and use the data to improve performance. In §5, we
develop adaptive controllers that deliberately create transients
of Σc to test indeterminate transitions of Σ and use this data
to improve performance. The results are applied to model
matching: Given a determinate asynchronous machine model
? The work of J.-M. Yang was supported by Basic Science Research Program
through the National Research Foundation of Korea (NRF) funded by the
Ministry of Education, Science and Technology (No. 2011-0005116).

Σ′, we design adaptive controllers C satisfying Σc = Σ′, where
equality refers to stable transitions.

Fundamental mode operation prohibits the simultaneous change
of two or more variables. For Figure 1, this means that C
and Σ cannot change state simultaneously (Murphy, Geng, and
Hammer [2003]). Fundamental mode operation is observed in
all our designs; it prevents uncertainties that may arise when
simultaneous changes appear instead as sequential changes in
unpredictable order.

Our discussion is within the framework of Murphy, Geng,
and Hammer [2002, 2003], Geng and Hammer [2005],
Venkatraman and Hammer [2006b,c], and Yang and Ham-
mer [2008a,b], where control of asynchronous sequential ma-
chines is examined. Other aspects of the control of sequential
machines are found in Ramadge and Wonham [1987], This-
tle and Wonham [1994], and Kumar, Nelvagal, and Marcus
[1997], where discrete event systems are investigated; in Ham-
mer [1994, 1995, 1996a], HAMMER [1996b], Dibenedetto,
Saldanha, and Sangiovanni-Vincentelli [1994], Barrett and
Lafortune [1998], and Yevtushenko, Villa, Brayton, Petrenko,
and Sangiovanni-Vincentelli [2008], where control and model
matching of sequential machines is studied; and in other
sources.

This note is organized as follows. The algebraic framework of
Yang, Xing, and Hammer [2011b] is reviewed in §2. Section
3 explores adaptive model matching, while §4 and §5 develop
design algorithms for adaptive controllers.

2. AN ALGEBRA OF INDETERMINACY

An input/state asynchronous machine Σ =
(
A,X ,x0, f

)
has in-

put alphabet A, state set X , initial state x0, and recursion func-
tion f : X×A→ X – a partial function. Given an input sequence
u0u1u2 . . ., it creates a sequence of states xk+1 = f (xk,uk), k =
0,1,2, . . ., where x0 := x0. A pair (x,u) ∈ X ×A is valid if it is
in the domain of f . A valid pair (x,u) is a stable combination if
f (x,u) = x; otherwise, it is a transient combination. A machine
lingers at a stable combination until an input change occurs; it
passes quickly through transient combinations (ideally, in zero
time). Applying an input character u at a state x can give rise to
a chain of transitions x1 := f (x,u), x2 := f (x1,u), ... If this chain
terminates, then xi = f (xi,u) for some integer i ≥ 1, and xi is

Preprints of the 16th IFAC Symposium on System Identification
The International Federation of Automatic Control
Brussels, Belgium. July 11-13, 2012

© IFAC, 2012. All rights reserved. 1671



the next stable state. If the chain does not terminate, there is an
infinite cycle. This note concentrates exclusively on machines
with no infinite cycles.

The stable recursion function s of Σ is defined at every valid
pair (x,u) by s(x,u) := x′, where x′ is the next stable state.
The stable recursion function describes a user’s experience,
since transients pass very quickly. Still, transients play an
important role, since the controller C of Figure 1 works by
turning undesirable stable combinations of Σ into transient
combinations of Σc ([Murphy, Geng, and Hammer , 2003]). It
also uses transients to gauge the response of Σ at indeterminate
transitions without impeding user experience.

For an input string u = u0u1 · · ·uq, the notation s(x,u) denotes
the final stable state reached by Σ, when u is applied starting at
the state x. For fundamental mode operation, u must be applied
character-by-character, waiting after each character for Σ to
reach its next stable state, before applying another character.
Denote by A∗ the set of all strings of characters of A.

Due to malfunctions, errors, or incomplete characterization,
there might be several options for a machine’s next state. Re-
garding f as a set valued function, all possible next states at
an indeterminate pair (x,u) form the set f (x,u). The stable
recursion function is then set valued as well. To guaranty fun-
damental mode operation, indeterminate pairs (x,u) at which
x ∈ s(x,u) must not be accessed and are considered invalid
(Yang, Xing, and Hammer [2011b,a]).

2.1 The Adjusted Machine

Consider an indeterminate machine Σ =
(
A,X ,x0, f

)
with the

stable recursion function s and the set of indeterminate pairs

U := {(z1,u1),(z2,u2), ...,(zr,ur)} ⊆ X×A. (1)
The set of potential outcomes Zi := s(zi,ui), i = 1, ...,r, is the
set of possible next stable states:

Zi := {zi,1, . . . ,zi,n(i)} ⊆ X ,n(i)> 1. (2)

Formally, we can resolve the indeterminacy by associating a
unique ‘pseudo’ character with each potential outcome: let B be
an alphabet disjoint from the input alphabet A; choose a distinct
set Ai of n(i) characters of B – one character for each potential
outcome

Ai := {ui,1,ui,2, ...,ui,n(i)} ⊆ B, where
Ai∩A j =∅ for all i 6= j ∈ {1, ...,r}. (3)

The pseudo alphabet is A′ := ∪i=1,...rAi, and the extended input
alphabet is Ã := A ∪ A′. Now, build from Σ a determinate
machine:
Definition 1. The adjusted stable recursion function:

sa(x,u) :=



s(x,u) if (x,u) is a determinate pair;

zi, j if (x,u) = (zi,ui, j) for some
i ∈ {1, ...,r}, j ∈ {1,2, ...,n(i)};

zi, j if (x,u) = (zi, j,ui, j) for some
i ∈ {1, ...,r}, j ∈ {1,2, ...,n(i)};

invalid for all other (x,u) ∈ X× Ã,
including all (x,u) ∈U.

(4)

Then, Σa := (Ã,X ,x0,sa) is the adjusted machine. �

In (4), the first line makes Σa identical to Σ at determinate pairs
of Σ; the second line formally resolves indeterminacy of each
indeterminate pair (zi,ui) by associating a distinct pseudo input

character ui, j ∈ Ã with each potential outcome zi, j; the third line
makes each pair (zi, j,ui, j) into a stable combination of Σa; and
the fourth line turns all indeterminate pairs of Σ into invalid
pairs of sa. Then, Σa is a determinate ‘synthetic’ machine, as
pseudo characters cannot be applied as real inputs to Σ.
Example 2. Consider an asynchronous machine Σ with state set
X = {x1,x2,x3,x4}, input alphabet A = {a,b,c,d}, initial state
x0 = x1, and recursion function described by following table,
where the outcomes of the pairs (x2,c) and (x3,a) are not fully
specified.

state a b c d
x1 x2 x1 x1 −
x2 x2 − {x1,x4} x3

x3 {x2,x4} − − x3

x4 x4 x1 x4 x4

Using the pseudo alphabet A′ = {a1,a2,c1,c2}, the adjusted
stable recursion function sa is given by Table 1. We can see that
sa is a stable recursion function; for instance, sa(x2,c1) = x1

and sa(x1,c1) = x1.

Table 1. The adjusted stable recursion function

state a b c d a1 a2 c1 c2

x1 x2 x1 x1 − − − x1 −
x2 x2 − − x3 x2 − x1 x4

x3 − − − x3 x2 x4 − −
x4 x4 x1 x4 x4 − x4 − x4

2.2 Complete Sets and Semirings

On the set (Ã)∗ of all extended alphabet strings, we induce a
semiring A: the product of strings a,b∈ (Ã)∗ is their concatena-
tion ab; the sum of subsets c,d ⊆ (Ã)∗ is the union c+d := c∪
d; and the distributive laws are

a(b+ c) = ab+ac,(a+b)c = ac+bc.

Now, consider an indeterminate pair (zi,ui) of the machine Σ

with the outcomes {zi,1, ...,zi,n(i)}, and let Ai = {ui,1, ...,ui,n(i)}
be the corresponding pseudo input characters. By (4), we have
zi, j = sa(zi,ui, j) and zi, j = sa(zi, j,ui, j). Assume that Σ has a
state z′ such that, for each outcome zi, j, there is an input string
α j ∈ A∗ (with no pseudo characters) satisfying s(zi, j,α j) =
z′, j = 1, ...,n(i). Then, a state feedback controller can always
take Σ from (zi,ui) to z′: detecting zi, j, the controller applies to
Σ the input string α j. Thus, the set of strings

γ
1(i) := { ui,1α1+ui,2α2+· · ·+ui,n(i)αn(i) }, (5)

where α1,α2, ...,αn(i) ∈A∗ satisfy sa(zi,ui,1α1) = sa(zi,ui,2α2)

= · · ·= sa(zi,ui,n(i)αn(i)), induces a a determinate stable transi-
tion from (zi,ui) to a common final stable state.

If Σ reached (zi,ui) from a determinate pair (z,u) by an input
string α ∈ A∗, then the set of strings

Γ
1(i) :=

{
αγ

1(i)
}

(6)
has the features: a) it includes a response to every outcome of
the indeterminate pair (zi,ui); and b) each string of the set takes
Σ to the same stable state.

Applying this to all indeterminate pairs
{
(z1,u1), ..., (zr,ur)}

of Σ yields the family of complete sets of order 1
Γ

1(Σ) := ∪i=1,...,rΓ
1(i);Γ

0(Σ) := {α ∈ A∗} .

16th IFAC Symposium on System Identification
Brussels, Belgium. July 11-13, 2012

1672



Building up, after creating the family Γp(Σ) of complete sets of
order p for an integer p≥ 1, define

γ
p+1(i) := { ui,1α1+ui,2α2+· · ·+ui,n(i)αn(i)} , (7)

where α1,α2, ...,αn(i) ∈
[(
∪ j=0,...,pΓ j(Σ)

)]∗ and sa(zi,ui,1α1)

= sa(zi,ui,2α2) = · · ·= sa(zi,ui,n(i)αn(i)). Then, the family
Γp+1(i) of all complete sets of order p+1 for the indeterminate
pair (zi,ui) is

Γ
p+1(i) := {αγ

p+1(i)}, (8)
where α ∈

[(
∪ j=0,...,pΓ j(Σ)

)]∗ takes Σ from a determinate pair
to the indeterminate pair (zi,ui), and the family of all complete
sets of order p+1 of Σ is

Γ
p+1(Σ) := ∪i=1,2,...rΓ

p+1(i).
Definition 3. A complete set of Σ is any member of the family
Γ(Σ) := ∪p=0,1,2,...Γ

p(Σ). �

A complete set induces a determinate transition that may in-
clude indeterminate segments. Complete sets are related to state
feedback (Yang, Xing, and Hammer [2011b]):
Theorem 4. Let Σ be an indeterminate machine with the ad-
justed machine Σa = (Ã,X ,x0,sa), and let x and x′ be two states
of Σ. Then, the following are equivalent:
(i) There is a state feedback controller C that takes Σ through a
determinate transition from x to x′ in fundamental mode.
(ii) There is a complete set γ satisfying sa(x,γ) = x′. �

2.3 Reducing Sets of Input Sequences

Considering that, by Theorem 4, only complete sets matter for
the existence of state feedback controllers, we can simplify
expressions in the semiring A by the following rule

γ +α = γ for a complete set γ and a set α ⊆ (Ã)∗. (9)
A slight reflection shows that the following is also true.
Proposition 5. If γ and γ ′ are complete sets, then so is γγ ′. �
Definition 6. A set of input strings S ⊆ (Ã)+ is reducible if
it can be simplified into a complete set by using (9) and
Proposition 5; otherwise, S is irreducible. A reducible set is in
reduced form when it is expressed as a complete set. �

By Theorem 4, reducible sets characterize transitions that can
be implemented in determinate form by state feedback con-
trollers. Thus, the existence of such state feedback controllers
can be deduced by simple algebraic manipulations within the
semiring A.

2.4 Stable Reachability

Applying the matrix of stable transitions of[Murphy, Geng, and
Hammer , 2003] to the adjusted machine Σa, define
Definition 7. The one-step adjusted matrix of stable transitions
of Σ has the entries

Ra
pq(Σ,1) :=

{
{u ∈ Ã | sa(xp,u) = xq } if not the empty set,
N else,

where N is a character not in Ã and p,q = 1, ...,n. �

Extend the semiring A to include the character N:
Nα = αN = N,N +α = α +N = α for all α ∈ (Ã)+.

The power (Ra(Σ,1))i, i = 1,2, ..., is given by the usual defini-
tion of matrix multiplication, using the operations of A. Then,
letting n be the number of states of Σ, the combination

Ra(Σ) := Ra(Σ,1)+(Ra(Σ,1))2 + · · ·+(Ra(Σ,1))n−1 (10)

is called the adjusted matrix of stable transitions (Yang, Xing,
and Hammer [2011b]).
Definition 8. The reduced matrix of stable transitions R(Σ) is
obtained by writing all reducible entries of Ra(Σ) in reduced
form; irreducible entries are left unchanged. �

By Murphy, Geng, and Hammer [2003, Lemma 3.9], the matrix
Ra(Σ) characterizes all possible transitions of the adjusted
machine Σa. Combining this with Theorem 4, we obtain ([Yang,
Xing, and Hammer , 2011b]):
Corollary 9. Let Σ be an asynchronous machine with the state
set {x1,x2, ...,xn} and the reduced matrix of stable transitions
R(Σ). Then, the following are equivalent.
(i) There is a state feedback controller that takes Σ through a
determinate transition from a stable combination with xi to a
stable combination with x j in fundamental mode operation.
(ii) Ri j(Σ) is a complete set. �

The information of the reduced matrix of stable transitions can
be condensed ([Murphy, Geng, and Hammer , 2003]):
Definition 10. Let Σ be an asynchronous machine with n states
and reduced matrix of stable transitions R(Σ). Let ∆ be a
character not in Ã∪{N}. Then, the skeleton matrix K(Σ) is an
n×n matrix with the entries

Ki j(Σ) :=

{ 1 if Ri j(Σ) is a complete set,
0 if Ri j(Σ) = N,
∆ if Ri j(Σ) is irreducible.

�

In K(Σ), transitions indicated by 1 can be implemented in
determinate form by a state feedback controller operating in
fundamental mode; transitions indicated by 0 are impossible;
and transitions indicated by ∆ are indeterminate – these may or
may not be possible, depending on outcomes of indeterminate
transitions along the way.

3. MODEL MATCHING

Considering ∆ as a number
0 < ∆ < 1, (11)

the following characterization of model matching was derived
in Yang, Xing, and Hammer [2011a,b].
Theorem 11. Let Σ and Σ′ be input/state asynchronous ma-
chines with the same state set, where Σ′ is determinate. Then,
the following are equivalent:
(i) There is a state feedback controller C satisfying Σc = Σ′,
where Σc operates in fundamental mode.
(ii) K(Σ)≥ K(Σ′).

Inequality (ii) of Theorem 11 fails if a) K(Σ) has an entry of
0 opposite an entry of 1 in K(Σ′); or if b) K(Σ) has an entry
of ∆ opposite an entry of 1 in K(Σ′). In a), model matching is
impossible; in b), however, model matching is possible if the
outcome of certain indeterminate transitions is favorable. This
leads us to pre-testing of indeterminate transitions.

4. ADAPTATION

4.1 Transitions to be Tested

By Theorem 11(ii), only transitions involving entries ∆ of K(Σ)
that appear opposite entries of 1 in K(Σ′) need testing to verify
whether model matching is possible. Define the set of pairs

D(Σ′,Σ) =
{
(i, j)

∣∣ Ki j(Σ) = ∆ and Ki j(Σ
′) = 1

}
. (12)

16th IFAC Symposium on System Identification
Brussels, Belgium. July 11-13, 2012

1673



Example 12. Let K(Σ) be the skeleton matrix of the machine Σ

of Example 2, and consider a determinate model Σ′ with initial
state x0 = x1 and skeleton matrix K(Σ′), where

K(Σ) =

 1 1 1 ∆

1 1 1 ∆

1 1 1 ∆

1 1 1 1

 ,K(Σ′) =

 1 1 1 1
1 1 1 1
0 0 1 0
1 1 1 1

 . (13)

Then, D(Σ′,Σ) = {(1,4),(2,4)}. �

Let P(A′) be the family of all subsets of the pseudo alphabet A′.
For the extended alphabet Ã, define the projection Π′ : (Ã)+→
P(A′) that extracts all pseudo characters from a string t ∈ (Ã)+:

Π
′t := {v ∈ A′ | v is a character of t }.

For a list of strings t1, t2, ..., tq ∈ (Ã)+, the projection Π′ creates
a list of sets, omitting duplicates:

Π
′{t1 + t2 + · · ·+ tq} :=

{
Π
′t1,Π′t2, ...,Π′tq

}
.

Example 13. Referring to Example 2, we have
Π′
{

bac2 +aa1c2 +ac2 +ac2a2
}
=
{
{c2},{a1,c2},{a2,c2}

}
.

Then, pseudo characters that are candidates for testing are
characterized by:
Definition 14. Let Σ be an asynchronous machine with the
reduced matrix of stable transitions R(Σ), and let Σ′ be a model.
The comparison matrix S(Σ′,Σ) has the entries

Si j(Σ
′,Σ) :=

{
Π′Ri j(Σ) if (i, j) ∈ D(Σ′,Σ),
∅ otherwise. �

An entry of the comparison matrix is a family of sets of pseudo
characters. Each member of the (i, j) entry consists of the
pseudo characters that appear in one string of Ri j(Σ), namely, of
pseudo characters that facilitate a stable transition from the state
xi to the state x j. Testing these transitions determines model
matching possibilities.
Example 15. Based on Examples 2 and 12:

S(Σ′,Σ) =


∅ ∅ ∅

{
{c2},{a1,c2},{a2,c2},{a2},
{a1,a2,c2},{a1,a2},{c1,c2}

}
∅ ∅ ∅

{
{c2},{a1,c2},{a2,c2},{a2},
{a1,a2,c2},{a1,a2},{c1,c2}

}
∅ ∅ ∅ ∅
∅ ∅ ∅ ∅

 . �

By Definition 1, a pseudo character v ∈ A′ is associated with an
original input character u(v) ∈ A and with two states z(v),z′(v)
of Σ satisfying z′(v) = sa(z(v),v) ∈ s(z(v),u(v)), i.e., z′(v) is
one possible outcome of (z(v),u(v)). If z′′ 6= z′(v) is another
possible outcome of (z(v),u(v)), then it is associated with a
different pseudo character w 6= v, where z(w) = z(v), u(w) =
u(v), z′(w) = z′′, and z′(w) = sa(z(w),w) ∈ s(z(w),u(w)). Each
pseudo character is associated with one distinct outcome.

Now, test an indeterminate pair (z(v),u(v)), and let z′true be the
outcome. Being a deterministic machine, Σ will always respond
with z′true to (z(v),u(v)). Define the true stable recursion func-
tion strue : X×A→ X by the test outcome, namely,

strue(z(v),u(v)) := z′true.

A non-empty entry Si j(Σ
′,Σ) consists of subsets of pseudo

characters; each such subset includes all pseudo characters of
an input string taking Σa from a stable combination with xi

to a stable combination with x j. If strue is compatible with all
transitions induced by the pseudo characters of one of these
subsets, then the transition from xi to x j is achieved by (the
current sample of) Σ. This leads to
Proposition 16. Let Σ and Σ′ be input/state asynchronous ma-
chines with comparison matrix S(Σ′,Σ) and identical state sets,
where Σ′ is determinate. Let sa be the adjusted stable tran-
sition function of Σ and let strue be its true stable recursion
function. For a pseudo character v ∈ A′, let (z(v),u(v)) be the
indeterminate pair associated with v. Then, when Ki j(Σ) = ∆,
the following are equivalent.
(i) Ki j(Σ) turns into 1 after testing.
(ii) There is a member θ ∈ Si j(Σ

′,Σ) such that strue(z(v),u(v))=
sa(z(v),v) for all v ∈ θ .

Proposition 16 is the basis of our adaptation algorithm.

5. TESTING AND ADAPTATION

5.1 Testing in the Initial State

Testing in the initial state is performed by inducing transient
transitions of Σc that take Σ in a round trip from its initial state
x0 back to x0, passing through critical indeterminate transitions.
Such testing can involve only states from which there is a
guaranteed return to the initial state x0 = x j, namely, only states
of the set

ρ
0 :=

{
xi ∈ X

∣∣ Ki j(Σ) = 1
}
. (14)

To test a pair (x,u), we must be able to reach x from the
initial state x0 = x j, at least for some outcomes of indeterminate
transitions, so x must be in the set

S0 :=
{

xi ∈ X
∣∣ K ji(Σ) 6= 0

}
. (15)

During testing, after reaching a state x, it must be possible to
return to the initial state x0 from any outcome of a tested pair
(x,u), so every tested pair (x,u) must be a member of the set

T (Σ,x0) :=
{
(x,u) ∈ S0×A

∣∣s(x,u)⊆ ρ
0} , (16)

where s is the stable recursion function of Σ. This leads to:
Proposition 17. Let Σ = (A,X ,x0, f ) be an indeterminate asyn-
chronous machine with stable recursion function s. Then, an
indeterminate pair of Σ can be tested in the initial state only if
it belongs to the set T (Σ,x0) of (16). �

Note that not all members of T (Σ,x0) are testable in every
sample of Σ. The pairs whose testing can be guaranteed a-priori
are characterized by the following.
Proposition 18. Let (x,u) be an indeterminate pair of an asyn-
chronous machine with skeleton matrix K(Σ) and initial state
x0 = x j. The following are equivalent.
(i) (x,u) can always be tested, irrespective of the outcomes of
any indeterminate transitions.
(ii) (x,u) is a member of the set
τ(Σ,x0) :=

{
(xi,u) ∈ T (Σ,x0)

∣∣ K ji(Σ) = 1
}

. �

We call τ(Σ,x0) the set of certainly testable pairs.

Let Ai be as in (3). Then, the set of all pseudo characters
associated with the set T (Σ,x0) of (16) is

A′(Σ,x0) =
⋃

{i|(zi,ui)∈T (Σ,x0)}
Ai. (17)

16th IFAC Symposium on System Identification
Brussels, Belgium. July 11-13, 2012

1674



By Proposition 17, pseudo characters outside this set cannot be
tested in the initial state. The set of pseudo characters that can
be tested with certainty (namely, in all samples of Σ) is

A′c(Σ,x
0) =

⋃
{i|(zi,ui)∈τ(Σ,x0)}

Ai. (18)

The difference set A′(Σ,x0)\A′c(Σ,x
0) consists of pseudo char-

acters that can be tested only in some samples of Σ.
Example 19. For the machine Σ of Example 2 with the initial
state x0 = x1, a calculation shows that

A′(Σ,x0) = A′c(Σ,x
0) = A′ = {a1,a2,c1,c2}. �

Testing in the initial state is performed by input strings that
take Σ from its initial state back to its initial state through
indeterminate transitions. Considering that the state set, the
input alphabet, and the pseudo alphabet are all finite sets, all
such strings are of bounded length, say bounded by µ > 0. Let
x0 = xα be the initial state of Σ. Then, any family T of complete
strings that take Σ through round trips from the initial state
back to the initial state satisfies T ⊆ (Ra(Σ,1))(µ)αα . We have (see
Yang, Xing, and Hammer [2011a] for a stronger statement):
Lemma 20. Let Σ be an indeterminate asynchronous machine
with the initial state x0 = xα and the one-step matrix of stable
transitions Ra(Σ,1). Then, there is an integer µ > 0 such that
the entry (Ra(Σ,1))(µ)αα includes a family T of complete strings
satisfying A′c(Σ,x

0)⊆Π′T . �

Example 21. For the machine Σ of Example 2 with x0 = x1,
calculation yields:

Table 2. The family T of complete sets.

entry
The family T of complete sets

(not all terms listed)
Π′T

(Ra(Σ,1))11 {· · ·} ∅
(Ra(Σ,1))(2)11 {· · ·} ∅
(Ra(Σ,1))(3)11 {aγ1,aγ2,aγ3}

{
c1,c2}

(Ra(Σ,1)(4)11

 (Ra(Σ,1))(3)11 ,aγ1b,aγ2b,
aγ3b,aγ3b,aγ1c,aγ2c,
aγ3c,baγ1, · · · ,caγ1, · · ·

 {
c1,c2}

(Ra(Σ,1)(5)11

{
(Ra(Σ,1)(4)11 ,bcaγ1,bcaγ2,
bcaγ3,cbaγ1, · · · ,adγ4, · · ·

} {
a1,a2,
c1,c2

}

where γ1 := c1 + c2b, γ2 := (c1 + c2)b, γ3 := c1c + c2b, and
γ4 := a1γ1 +a2b are complete sets. As (Ra(Σ,1)(5)11 includes all
pseudo characters, µ = 5 in Lemma 20. �

5.2 The Testing Algorithm

The next algorithm guides the controller as it tests the machine
Σ in the initial state. The testing is automatic and returns Σ

to its original initial state after testing. The testing constitutes
a transient of Σc, and hence does not affect user experience.
Recall that the true stable recursion function strue indicates
testing outcomes. An examination of the algorithm confirms the
following (Yang, Xing, and Hammer [2011a]).
Theorem 22. Let Σ and Σ′ be input/state asynchronous ma-
chines with identical state sets, where Σ′ is determinate. Let
K(Σ) be the outcome of Algorithm 5.2. Then,

(i) Algorithm 5.2 can be implemented by a state feedback
controller in fundamental mode operation.
(ii) Statements (a) and (b) are equivalent:

Testing in the Initial State: Let Σ = (A,X ,x0, f ) be an inde-
terminate asynchronous machine with adjusted machine Σa =
(Ã,X ,x0,sa), state set X =

{
x1, ...,xn

}
, initial state x0 = xα , true

stable recursion function strue, one-step matrix of stable transi-
tions Ra(Σ,1), and skeleton matrix K(Σ). Let Σ′ = (A,X ,x0,s′)
be a determinate model with skeleton matrix K(Σ′), and let
S(Σ′,Σ) be the reduced comparison matrix.
Step 0. Set β := 0 and K(Σ,0) := K(Σ).
Step 1. Let A′(Σ,x0) be given by (17). If no pseudo characters

of A′(Σ,x0) appear in the matrix S(Σ′,Σ), then testing of
indeterminate transitions in the initial state is not meaningful;
go to Step 9.

Step 2. Let T and µ be as in Lemma 20, and let t1, t2, ..., tq be
the complete sets of strings included in T . Define the subsets
of pseudo characters θi := Π′ti, i = 1,2, ...,q. Replace β by
β +1, set j := 1, and set K(Σ,β ) := K(Σ,β −1).

Step 3. If θ j has no characters in common with the matrix
S(Σ′,Σ), then go to Step 7.

Step 4. Apply the complete set t j to the machine Σ in funda-
mental mode operation, as follows (after each character, wait
until Σ has reached its next stable state and record it):
Based on the stable state reached by Σ, select the next input
character v; if v is a pseudo character, apply to Σ the original
character u(v) ∈ A associated with v.
Continue until Σ returns to its initial state x0.

Step 5. Partition the set θ j into two disjoint subsets θ
+
j and θ

−
j ,

where θ
+
j consists of all pseudo input characters v ∈ θ j for

which strue(z(v),u(v)) = sa(z(v),v), and θ
−
j := θ j \ θ

+
j (the

set difference).
Step 6. Perform sub-steps (a) to (d) below for every pair of

integers p, ` ∈ {1, ...,n}:
(a) If there is a member θ of Sp`(Σ

′,Σ) satisfying θ ⊆ θ
+
j ,

then assign Kp`(Σ,β ) := 1, and replace Sp`(Σ
′,Σ) by the

empty set.
(b) Replace every member θ of Sp`(Σ

′,Σ) by the difference
set θ \θ

+
j .

(c) Remove from Sp`(Σ
′,Σ) every member that is not disjoint

with θ
−
j . If this turns Sp`(Σ

′,Σ) into the empty set, assign
Kp`(Σ,β ) := 0; then, if Kp`(Σ

′) = 1, set K(Σ) := K(Σ,β )
and go to Step 9 (model matching is impossible).

(d) If K(Σ,β ) ≥ K(Σ′), then set K(Σ) := K(Σ,β ) and go to
Step 9 (model matching is possible).

Step 7. If j < q, replace j by j+1 and return to Step 3.
Step 8. If K(Σ,β ) 6= K(Σ,β − 1), then recalculate the one-

step matrix of stable transitions Ra(Σ,1) and the comparison
matrix S(Σ′,Σ). Set K(Σ,β ) := K(Σ) and Return to Step 1.

Step 9. Output the matrix K(Σ) and terminate.

(a) Testing in the initial state determines that there is a con-
troller C achieving Σc = Σ′ in fundamental mode operation.

(b) K(Σ)≥ K(Σ′).

(iii) If there is a pair of integers i, j for which Ki j(Σ) = 0 while
Ki j(Σ

′) = 1, then there is no controller satisfying Σc = Σ′ in
fundamental mode operation.
(iv) If there is a pair of integers i, j for which Ki j(Σ) = ∆ while
Ki j(Σ

′) = 1, then testing in the initial state cannot determine
whether there exists of a controller C for which Σc = Σ′ in
fundamental mode operation.
Example 23. Referring to Example 12, design a controller C
for Σ to match Σ′. Assume that the true stable recursion function

16th IFAC Symposium on System Identification
Brussels, Belgium. July 11-13, 2012

1675



strue of Σ, which gives the results of the testing described below,
is as in Table 3.

Table 3. The true stable recursion function.

state a b c d

x1 x2 x1 − −
x2 x2 − x4 x3

x3 x2 − − x3

x4 − x1 x4 x4

Using Algorithm 5.2, we determine whether model matching
is possible. Considering the matrix S(Σ′,Σ) of Example 15,
a slight reflection shows that it is enough to test the pseudo
characters {{a2},{c2}}. According to Example 21,

T = {a(c1 + c2b), · · · ,ad[a1(c1 + c2b)+a2b], · · ·}
=: {t1, · · · , t2, · · ·};

by (17), we have A′(Σ,x0) = A′c(Σ,x
0) = {a1,a2,c1,c2}.

Step 0. Set β := 0 and K(Σ,0) := K(Σ), where K(Σ) is given
in Example 2.

Step 1: As A′(Σ,x0) and S(Σ′,Σ) have pseudo characters in
common, continue to Step 2.

Step 2: θ1 := Π′t1 = {c1,c2}, and θ2 := Π′t2 = {a1,a2,c1,c2};
set j := 1.

Step 3: According to Example 15, {{a2},{c2}} ⊆ S14(Σ
′,Σ).

As θ1 has the pseudo character c2 in common with S14(Σ
′,Σ),

proceed to the next step.
Step 4: In this Example, u(c1) = c and u(c2) = c, namely, c is

the real character corresponding to the pseudo characters c1

and c2. Using the complete set t1 = a(c1 + c2b), operate Σ as
follows: at the initial state x0 = x1, apply the input character
a to reach the stable state x2. Upon reaching x2, apply to
Σ the input character c = u(c1) = u(c2), which activates an
indeterminate transition of Σ. According to Table 3, the next
stable state of Σ turns out to be x4.

Step 5: Considering the adjusted stable recursion function sa
of Table 1, the true transition corresponds to the pseudo
character c2. Thus, θ

+
1 = {c2},θ−1 = {c1}.

Step 6: (a) Since θ
+
1 = {c2}, and {c2} is a member of

S14(Σ
′,Σ) and of S24(Σ

′,Σ), set K14(Σ) = K24(Σ) = 1 and
S14(Σ

′,Σ) = S24(Σ
′,Σ) = ∅. Then, (d) is valid, and model

matching is possible. The algorithm terminates.
Remark 24. The same principles can be used to test indeter-
minate transitions in any stable state of Σ. These tests would
encompass all testing possible in fundamental mode operation.

6. CONCLUSION

This note outlined an algebraic framework that yields adaptive
controllers for asynchronous sequential machines with incom-
pletely specified transitions. The controllers test the controlled
machine to learn as much as possible about its unknown tran-
sitions without interfering with user experience. The informa-
tion gained during testing improves closed loop performance
through a process of controller adaptation.

REFERENCES

G. Barrett and S. Lafortune [1998], “Bisimulation, the super-
visory control problem, and strong model matching for finite
state machines, Discrete Event Dyn. Systems: Theory & App.,
vol. 8, no. 4, pp. 377–429.

M. D. Dibenedetto, A. Saldanha and A. Sangiovanni-
Vincentelli [1994], “Model matching for finite state ma-
chines,” Proc. IEEE Conf. on Decision and Control, vol. 3,
1994, pp. 3117–3124.

X. J. Geng and J. Hammer [2005], “Input/output control of
asynchronous sequential machines,” IEEE Tr. Aut. Control,
vol. 50, no. 12, pp. 1956–1970, 2005.

J. Hammer [1994], “On some control problems in molecular
biology,” Proceedings of the IEEE Conference on Decision
and Control, pp. 4098–4103, December 1994.

J. Hammer [1995], “On the modeling and control of biological
signal chains,” Proc. IEEE Conf. on Decision and Control,
pp. 3747–3752, December 1995.

J. Hammer [1996a], “On the corrective control of sequential
machines,” Int. J. Control, vol. 65, no. 2, pp. 249–276.

J. HAMMER [1996b], “On the control of incompletely de-
scribed sequential machines,” International Journal of Con-
trol, vol. 63, no. 6, pp. 1005–1028.

R. Kumar, S. Nelvagal, and S. I. Marcus [1997], “A discrete
event systems approach for protocol conversion,” Discrete
Event Dynamic Systems: Theory and Applications, vol. 7, no.
3, pp. 295–315.

T. E. Murphy, X. J. Geng, and J. Hammer [2002], “Controlling
races in asynchronous sequential machines,” Proc. IFAC
World Cong., Barcelona, 2002.

T. E. Murphy, X. Geng, and J. Hammer [2003], “On the control
of asynchronous machines with races,” IEEE Trans. Aut.
Control, vol. 48, no. 6, pp. 1073–1081, 2003.

P. J. G. Ramadge and W. M. Wonham [1987], “Supervisory
control of a class of discrete event processes,” SIAM J.
Control and Opt., vol. 25, no. 1, pp. 206–230.

M.-D. Shieh, C.-L. Wey, and P. D. Fisher [1993], “Fault ef-
fects in asynchronous sequential logic circuits,” IEE Proc.-E,
vol. 140, no. 6, pp. 327–332, 1993.

J. G. Thistle and W. M. Wonham [1994], “Control of infinite
behavior of finite automata,” SIAM Journal on Control and
Optimization, vol. 32, no. 4, pp. 1075–1097.

N. Venkatraman and J. Hammer [2006b], “Controllers for
asynchronous machines with infinite cycles,” Proc. 17th Int.
Symp. on Mathematical Theory of Networks and Systems, pp.
1002–1007, Kyoto, Japan, 2006.

N. Venkatraman and J. Hammer [2006c], “On the control of
asynchronous sequential machines with infinite cycles,” Int.
J. Control., vol. 79, no. 7, pp. 764–785, 2006.

J.-M. Yang and J. Hammer [2008a], “Counteracting the effects
of adversarial inputs on asynchronous sequential machines,”
Proceedings of the IFAC World Congress, pp. 1432–1437,
Seoul, Korea, July 2008.

J.-M. Yang and J. Hammer [2008b], “State feedback control of
asynchronous sequential machines with adversarial inputs,”
Int. J. Control., vol. 81, no. 12, pp. 1910–1929, 2008.

J.-M. Yang, T. Xing, and J. Hammer [2011] “On the control
of indeterminate asynchronous sequential machines: an alge-
braic framework”, Proc. 2011 IEEE Int. Conf. on Intelligent
Computing and Intelligent Systems (ICIS 2011), Guangzhou,
China, November 2011.

J.-M. Yang, T. Xing, and J. Hammer [2011] “Adaptive control
of asynchronous sequential machines with state feedback”,
European J. Control (to appear).

N. Yevtushenko, T. Villa, R. Brayton, A. Petrenko, and A.
Sangiovanni-Vincentelli [2008], “Compositionally progres-
sive solutions of synchronous FSM equations,” Discrete
Event Dyn. Sys.: Th. & Appl., vol. 18, no. 1, pp. 51–89.

16th IFAC Symposium on System Identification
Brussels, Belgium. July 11-13, 2012

1676


