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The problem of controlling deterministic asynchronous
sequential machines with unknown transitions is consid-
ered. The objective is to develop adaptive state feedback
controllers that acquire data about unknown transitions
and utilize these data to improve closed-loop perfor-
mance. Presented are adaptation and control methodolo-
gies based on an algorithm that tests unknown transitions
and records their outcomes without interfering with user
experience.
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1. Introduction

Asynchronous sequential machines are finite state discrete
systems that operate without a clock. They serve criti-
cal roles in the implementation of high speed computing
systems, in parallel computing, in the modeling of signal-
ing chains in molecular biology, and in numerous other
applications. Often, the description of an asynchronous
sequential machine is not fully known: the machine may
not have been tested exhaustively, or its response may
be affected by interferences, malfunctions, errors, or
unexpected operating conditions.

∗Correspondence to: J. Hammer, E-mail: hammer@mst.ufl.edu

For example, consider an asynchronous machine that
models a signaling chain in molecular biology [5, 6]. Here,
portions of the machine’s behavior may be unknown due to
differences among specimens or due to incompletely char-
acterized biochemical reactions involved in the signaling
chain. Another example is provided by highly complex
asynchronous machines often used in computing; due to
complexity, the response of such machines cannot always
be verified under all excitation conditions, leaving parts
of the behavior incompletely characterized. Design and
implementation errors, as well as malfunctions, may also
give rise to situations where a machine’s response is not
fully described (e.g., [15]). In these cases and in others, the
underlying asynchronous machines are deterministic—
their response is always the same; it is just that the outcome
of some transitions is not fully characterized or known
a-priori.

An indeterminate transition of an asynchronous
machine is a deterministic transition whose outcome is
not known a-priori. Once an indeterminate transition is
tested and its outcome is recorded, it becomes a determi-
nate transition, namely, a deterministic transition with a
known outcome. A deterministic asynchronous machine
that includes one or more indeterminate transitions is
called an indeterminate machine. When attempting to
control indeterminate machines, specialized algorithms
must be developed to acquire data about indeterminate
transitions without hindering user experience.
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Fig. 1. Closed loop configuration.

Over time, as an indeterminate asynchronous machine
is taken through its normal tasks, more and more of its
indeterminate transitions may be activated and character-
ized. The notion of adaptive control refers to the process of
gaining data about a machine’s indeterminate transitions
during operation and using these data to improve perfor-
mance. An adaptive controller adjusts its functionality as it
acquires more information about the controlled machine.
The adaptation process, which includes data collection and
controller adjustment, must be performed latently without
disturbing the machine’s users.

The control configuration we employ is the classical
configuration described in Fig. 1. In the figure, � is an
indeterminate asynchronous machine that must be con-
trolled, while C is the controller—another asynchronous
machine. The machine represented by the closed loop is
denoted by �c. The objective is to make �c into a determi-
nate machine, namely, into a deterministic machine with
no indeterminate transitions.

The controller C collects information about � by
recording the response of � to indeterminate transitions.
As it gains information about indeterminate transitions
of �, the controller C adjusts its functionality to improve
control outcome. To this end, the controller C includes
two functional units: one unit gathers information about
the indeterminate machine �, while the other unit uti-
lizes this information to control �. We refer to C as an
adaptive controller. The process of gathering data about
indeterminate transitions of � must be performed without
affecting user experience and without creating uncertainty
in the response of the closed loop machine �c. The
main control objective discussed in this report is model
matching: given a determinate asynchronous machine
model �′, we develop adaptive controllers C that make
the closed loop machine �c indistinguishable from the
model �′.

Before describing the principles that underlie the design
of the controller C, we must review a few general fea-
tures of asynchronous machines. First, recall that an
asynchronous machine has two kinds of states: stable
states—states in which the machine lingers until an input
change occurs; and transient states—states through which
the machine passes very quickly on its way from one sta-
ble state to another. Transitions through transient states
are speedy, occurring ideally in zero time; as a result,
transient states do not affect user experience. Nevertheless,

the controller C can record transitions through transient
states by using a serial register; data collected in this
manner can be utilized to derive information about inde-
terminate transitions of � without interfering with user
experience.

In Section 7, we develop a controller C that works along
the following lines: it drives the closed loop machine �c

through a sequence of transient states designed to pass
indeterminate transitions of � whose outcome is criti-
cal to achieving the performance goals of the closed loop
machine �c; for each indeterminate transition it activates,
C records the outcome. These data are then utilized by C
to improve closed loop performance. The overall effect is
a process of adaptation, whereby C adjusts its action in
light of the outcomes of indeterminate transitions it had
recorded.

As indicated earlier, our main focus is on the develop-
ment of adaptive controllers that achieve model matching.
Specifically, a determinate asynchronous machine �′ is
provided as a model. The objective is to design an adaptive
controller C that makes the closed loop machine �c emu-
late �′, notwithstanding indeterminacies of the controlled
machine �. Explicitly, we seek an adaptive controller C
for which �c = �′, where the equality refers to stable
transitions. Although we focus on model matching, the
adaptive techniques developed here can be applied to a
wide range of other design objectives.

When working with asynchronous machines, it is
important to abide by fundamental mode operation, an
operating policy that prohibits the simultaneous change of
two or more variables. This policy helps prevent uncer-
tainties: due to asynchrony, simultaneous changes in two
or more variables are not possible; instead, the vari-
ables change in unpredictable sequential order, potentially
leading to an unpredictable outcome.

Condition 1.1: The closed loop machine �c of Fig. 1
operates in fundamental mode when all the following
conditions are valid:

(i) � is in a stable state while C is in transition.
(ii) C is in a stable state while � is in transition.

(iii) The external input ω changes only when � and C are
both in stable states. �

Parts (i) and (ii) of Condition 1.1 must be implemented
during the design of the controller C; part (iii) on the
other hand, is a restriction on the operation of the closed
loop machine. Nonetheless, as transitions of asynchronous
machines occur very quickly, (iii) does not impose a
burdensome requirement.

The paper is written within the framework of
[3, 4, 12, 13, 17–21], where various topics in the control of
asynchronous sequential machines are considered. Studies
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dealing with other aspects of the control of sequential
machines can be found in [11, 14, 16], where the theory
of discrete event systems is investigated; in [1, 2, 5–9, 22],
where issues related to control and model matching for
sequential machines are studied; and in many other
publications.

As indicated earlier, the present paper deals with adap-
tive control of asynchronous machines, paying particular
attention to the process of acquiring data about indetermi-
nate transitions without impairing user experience. This
process depends in a critical manner on specialized fea-
tures of asynchronous machines, such as the distinction
between stable and transient states and fundamental mode
operation.

The paper is organized as follows. Section 2 introduces
basic features of indeterminate asynchronous machines,
while Sections 3–5 discuss control theoretic features,
including reachability and model matching, for such
machines. Section 6 characterizes indeterminate transi-
tions that are critical to achieving the control objective at
hand, and Section 7 presents algorithms that guide the
operation of adaptive controllers. The paper concludes
in Section 8 with a few final remarks. A comprehensive
example runs through the paper to demonstrate concepts
and methodologies.

2. Indeterminate Machines

2.1. Basics

An input/state asynchronous machine � is represented
by a quadruple � = (A, X , x0, f ), where A is the input
alphabet, X is the set of states, x0 is the initial state, and
f : X ×A → X is a partial function that serves as the recur-
sion function of the machine. The machine � operates
according to the recursion

xk+1 = f (xk , uk), k = 0, 1, 2, . . . ,

where x0 := x0 is the initial state, and u0u1u2 . . . is
the input sequence; the machine generates the sequence
of states x0x1x2 . . . The integer k is the step counter: it
advances by one upon a change of the machine’s input or
state. A pair (x, u) ∈ X ×A that belongs to the domain of f
is called a valid pair. We denote by A∗ the set of all strings
of characters of A and by A+ the set of all such non-empty
strings.

Often, the values of the recursion function f are not pre-
cisely known; this would be the case, for example, when
� is afflicted by an unspecified malfunction, defect, or
design error; or when the outcome of a particular transi-
tion is not well documented. The latter occurs frequently
when modeling biological signaling chains, where some

of the reactions may not be well characterized or may vary
from specimen to specimen. In such cases, there may be
several options for the machine’s next state, and these can
be specified as a set of potential next states. Sets of poten-
tial next states can be accommodated by regarding f as a
set valued function. Letting P(X) be the class of all sub-
sets of X, consider P(X) as the codomain of f , so that
f : X × A → P(X). Then, for a valid pair (x, u), the set
f (x, u) consists of all next state options of the machine
�. The set f (x, u) characterizes the indeterminacy of the
machine at (x, u).

Definition 2.1: Let f : X × A → P(X) be the recursion
function of an asynchronous machine �. If f (x, u) includes
more than one element, then (x, u) is an indeterminate
pair of �; in such case, (x, u) induces an indeterminate
transition of �. �

Once a transition from an indeterminate pair (x, u) has
occurred and its outcome x′ has been recorded, the out-
come of this transition will always be x′. In other words,
a tested indeterminate pair (x, u) becomes a determinate
pair, and the recursion function f becomes single valued at
(x, u) with the value f (x, u) := {x′}. To simplify our nota-
tion, we write f (x, u) := x′ at pairs at which f is single
valued.

If all indeterminate pairs of � have been tested and
their outcomes acquired, the recursion function f becomes
a single valued function and � becomes a determinate
machine. It is not always necessary to test all indeterminate
pairs of a machine—it suffices to test pairs that are involved
in the machine’s tasks.

A valid pair (x, u) of the machine � is a stable combi-
nation if f (x, u) = x, namely, if x is a fixed point of the
function f with the input u; otherwise, (x, u) is a transient
combination. At a stable combination, the machine �

lingers until an input change occurs; on the other hand,
� passes quickly through transient combinations (ideally,
in zero time). A transition of � from one stable combina-
tion to another may take the machine through a chain of
several transient combinations. Specifically, assume that
� is at a stable combination (x, u′), when the input char-
acter changes to u. This may result in a chain of transitions
x1 := f (x, u), x2 := f (x1, u), … If this chain terminates,
then there is an integer i ≥ 1 for which xi = f (xi, u), and
xi is the next stable state of x with the input u. If the chain
does not terminate, then � has an infinite cycle. In the
present paper, we restrict our attention to machines with
no infinite cycles.

Convention 2.2: Only machines without infinite cycles
are considered. �

Thus, for machines considered in this paper, every valid
combination has a next stable state. The stable recursion
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function s : X × A → P(X) of the machine � is defined
at every valid pair (x, u) of � by s(x, u) := {x′}, where x′
is the next stable state (or the set of potential next stable
states) of x with the input u. As before, we shorten our
notation by writing s(x, u) := x′ for a determinate stable
transition.

The stable recursion function gives rise to the stable
state machine �|s = (A, X , x0, s), which represents the
stable state behavior of �; the machine �|s is also an
input/state machine [4, 13]. When s = f , then � is itself
a stable state machine.

As transient states are traversed very quickly (ideally, in
zero time), they do not affect the experience of a machine’s
users. Users are aware only of stable combinations, since
these are the only combinations at which a machine may
linger. Consequently, states that have no stable combina-
tions will never be noticed by a user and can be ignored.
In this regard, it is common practice to include in the state
set only states that have a stable combination. We adhere
to this practice: in our notation, every member of the state
set X of the controlled machine � has at least one stable
combination.

It is important to note that transient combinations do
play a critical role in feedback control of asynchronous
machines. Indeed, the controller C of Fig. 1 works by
turning undesirable stable combinations of � into tran-
sient combinations of the closed loop machine �c. This
dismisses undesirable features of the response of � and
molds the closed loop response to the desired model �′
(see [4, 13]). Furthermore, as discussed in Section 7, tran-
sients of the closed loop machine �c are employed by
the controller C to test indeterminate transitions of � and
acquire their outcomes. This forms a vital component of
the adaptive control process.

For a string of input characters u := u0u1 · · · uq, it is
convenient to use the shorthand notation

s(x, u) := s(s(. . . s(s(s(x, u0), u1), u2) . . .), uq)

to denote the final stable state that � reaches when the
input string u is applied starting at the state x. To preserve
fundamental mode operation, the string u must be applied
character-by-character, waiting after each input character
for � to reach its next stable state before applying the next
input character. A state x′ is stably reachable from a state
x if there is an input string u for which x′ ∈ s(x, u).

Finally, note that, in an asynchronous environment, it
is impossible to distinguish between consecutive identi-
cal characters of a string, since there is no specified time
duration to signify the end of one instance and the begin-
ning of the next instance of the same character. Thus,
a string of characters such as aabbbcc is indistinguish-
able from the string abc. This fact is used tacitly in our
discussion.

2.2. Indeterminate Transitions

Consider an indeterminate input/state asynchronous
machine � = (A, X, x0, f ) with the stable recursion func-
tion s. If s has no indeterminate pairs, then � behaves like
a determinate machine for all practical purposes, since
only stable transitions matter for user experience. In other
words, indeterminate transitions have an impact on user
experience only when they affect the stable recursion
function s. Let the indeterminate pairs of s be given by
the set

U := {(z1, u1), (z2, u2), . . ., (zr , ur)} ⊆ X×A. (2.1)

The next stable state of a pair (zi, ui) ∈ U is not precisely
known; instead, a subset

Zi := {zi,1, . . . , zi,n(i)} ⊆ X (2.2)

of n(i) > 1 states is specified as the set of potential next
stable states, so that

s(zi, ui) := Zi, i = 1, 2, . . ., r.

The set Zi is called the set of potential outcomes of (zi, ui).
Recall that an indeterminate machine � is determinis-

tic – its response is always the same; it is just that the
response to indeterminate pairs is not precisely known
a-priori. Once the next stable state z′ ∈ Zi of an indetermi-
nate pair (zi, ui) is found experimentally, the pair (zi, ui)

becomes determinate: the machine � will always move to
z′ in response to (zi, ui). An important task of the controller
C of Fig. 1 is to test and collect data about outcomes of
indeterminate pairs and utilize these data in future action.

To help us work more efficiently with indeterminate
transitions, we introduce a convenient algebraic frame-
work. First, we resolve formally the indeterminacy about
the outcome of an indeterminate pair (zi, ui) by associat-
ing a unique pseudo input character with every potential
outcome, as follows. Let B be an alphabet disjoint from
the input alphabet A of � and containing at least n(1) +
n(2) + · · · + n(r) characters. For each indeterminate pair
(zi, ui) of the stable recursion function s of �, choose a
distinct set Ai of n(i) characters of B, say

Ai := {ui,1, ui,2, . . ., ui,n(i)} ⊆ B, where

Ai ∩ A j = ∅ for all i 	= j ∈ {1, . . ., r}. (2.3)

We refer to Ai as the pseudo alphabet associated with the
indeterminate pair (zi, ui). Denote by

A′ :=
⋃

i=1,...,r

Ai (2.4)
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the set of all pseudo characters and define the extended
input alphabet

Ã := A
⋃

A′. (2.5)

Now, construct from � a determinate asynchronous
machine by associating a distinct pseudo input charac-
ter with every potential outcome of an indeterminate
transition, as follows.

Definition 2.3: Let � = (A, X , x0, f ) be an indeterminate
asynchronous machine with the stable recursion func-
tion s, the set of indeterminate pairs U of (2.1), the
potential outcomes of (2.2), and the extended alphabet
Ã of (2.5). Then, the adjusted stable recursion function
sa : X × Ã → X of � is

sa(x, u) :=⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

s(x, u) if (x, u) is a determinate pair of �;
zi, j if (x, u) = (zi, ui, j) for some

i ∈ {1, . . ., r} and j ∈ {1, 2, . . ., n(i)};
zi, j if (x, u) = (zi, j, ui, j) for some

i ∈ {1, . . ., r} and j ∈ {1, 2, . . ., n(i)};
invalid for all other (x, u) ∈ X × Ã,

including all (x, u) ∈ U.
(2.6)

The asynchronous machine �a := (Ã, X , x0, sa) is called
the adjusted machine of �. A set of strings γ ⊆ (Ã)+
is valid at a state x ∈ X if sa(x, t) is valid for all strings
t ∈ γ . �

In (2.6), the first line makes �a identical to � at deter-
minate pairs of �; the second line formally resolves the
indeterminacy of each indeterminate pair (zi, ui) by asso-
ciating a distinct pseudo input character ui, j ∈ Ã with
every potential outcome zi, j; the third line makes each
pair (zi, j, ui, j) into a stable combination of sa; and the
fourth line turns all members of the set U of indeterminate
pairs into invalid pairs of sa. Then, the resulting adjusted
machine �a has no indeterminate pairs; it is a determinate
and stable input/state asynchronous machine.

Example 2.4: Consider the asynchronous machine �

with the input alphabet A = {a, b, c, d}, the state set
X = {x1, x2, x3, x4}, the initial state x0 = x1, and the sta-
ble recursion function s described by Fig. 2 and Table 1;
in the table, “−” denotes an invalid pair.

For the present machine, the pairs (x2, c) and (x3, a) are
indeterminate; hence,

U = {(x2, c), (x3, a)}.
To obtain the adjusted machine, we introduce the pseudo
character sets

A1 := {c1, c2} and A2 := {a1, a2}.

Fig. 2. The machine �.

Table 1. The stable recursion function of �.

State a b c d

x1 x2 x1 x1 −
x2 x2 − {x1, x4} x3

x3 {x2, x4} − − x3

x4 x4 x1 x4 x4

Table 2. The adjusted stable recursion function.

State a b c d a1 a2 c1 c2

x1 x2 x1 x1 − − − x1 −
x2 x2 − − x3 x2 − x1 x4

x3 − − − x3 x2 x4 − −
x4 x4 x1 x4 x4 − x4 − x4

In view of (2.4) and (2.5), these yield the pseudo input
alphabet

A′ = A1 ∪ A2 = {a1, a2, c1, c2}
and the extended input alphabet

Ã = {a, b, c, d, a1, a2, c1, c2}.
By (2.6), the adjusted stable recursion function sa of � is
described in Table 2.

The adjusted stable recursion function sa determines the
adjusted machine �a, whose transition map is depicted
in Fig. 3; as we can see, �a has no indeterminate
transitions. �

The adjusted machine �a is a determinate ‘synthetic’
machine: each valid pair of �a has a single next stable
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Fig. 3. State flow diagram of �a.

state. Of course, members of the pseudo character set A′
cannot be applied as inputs to the real machine �. Never-
theless, as will become clear from our ensuing discussion,
they serve a critical role in helping derive adaptive control
algorithms for �.

3. A Semiring and Complete Sets

3.1. Complete Sets

To work with the extended alphabet Ã, we introduce a
semiring A over the set (Ã)∗ of all strings of characters of
Ã. In this semiring, concatenation serves as multiplication
and union serves as addition. Explicitly, the product of two
strings a, b ∈ (Ã)∗ is the concatenated string ab, where a is
the prefix (the earlier part) and b is the suffix (the later part)
of the result; clearly, this multiplication is not commuta-
tive. The sum of two subsets of strings c, d ⊆ (Ã)∗ is the
set of strings formed by their union, i.e., c + d := c ∪ d.
For expressions involving both operations, we introduce
distributive laws: given three strings a, b, c ∈ (Ã)∗,
define

a(b + c) = ab + ac,

(a + b)c = ac + bc.

A direct verification shows that, under these operations,
the set of strings (Ã)∗ becomes a semiring, with the empty
string ∅ serving as identity for both operations.

To examine the significance of the semiring A, consider
an indeterminate pair (zi, ui) of an asynchronous machine
� with the set of potential outcomes {zi,1, . . ., zi,n(i)}, and
let Ai = {ui,1, . . ., ui,n(i)} be the corresponding set of
pseudo input characters. Then, by (2.6), the adjusted
stable recursion function satisfies zi, j = sa(zi, ui, j) and
zi, j = sa(zi, j, ui, j), j = 1, . . ., n(i), i = 1, . . ., r. Now,

assume that � has a state z′ with the following feature:
for each one of the outcomes zi, j, there is an input string
α j ∈ A∗ (with no pseudo characters) for which

s(zi, j, α j) = z′, j = 1, . . ., n(i).

Then, irrespective of which one of the states zi,1, . . ., zi,n(i)

is the actual outcome of (zi, ui), we can always reach the
state z′ by using a state feedback controller: upon detecting
the outcome zi, j, the controller applies to � the input string
α j. This takes � to the state z′ for every possible outcome
of the indeterminate transition.

More generally, for the adjusted machine �a, every set
of strings of the form

γ 1(i) :=
{

ui,1α1 + ui,2α2 + · · · + ui,n(i)αn(i)

∣∣∣∣ α1, α2, . . ., αn(i) ∈ A∗ and
sa(zi, ui,1α1) = sa(zi, ui,2α2) = · · · = sa(zi, ui,n(i)αn(i))

}
(3.1)

gives rise to a determinate stable transition from the
indeterminate pair (zi, ui) to a common stable state.

Further, assume that the machine � started at a deter-
minate pair (z, u) and was taken by an input string α ∈ A∗
to the indeterminate pair (zi, ui). Then, using α as a prefix,
we obtain the set of strings

�1(i) :=
⎧⎨
⎩αγ 1(i)

∣∣∣∣∣∣
α ∈ A∗ takes � from a determinate
pair to the indeterminate pair (zi, ui),
and γ 1(i) is given by (3.1).

⎫⎬
⎭

(3.2)

The set of strings �1(i) includes a response to every pos-
sible outcome of the indeterminate pair (zi, ui), and, as a
whole, induces the same end result in all cases. Note that
�1(i) has two critical features:

(a) It includes a reaction to every possible outcome of the
indeterminate pair (zi, ui); and

(b) All these reactions ultimately take � to the same stable
state.

We refer to a set of the form �1(i) as a complete set of
order 1; the integer i indicates that it is associated with
the indeterminate pair (zi, ui). Assuming that � has the
r indeterminate pairs {(z1, u1), . . ., (zr , ur)} and collecting
all the associated complete sets of order 1, we obtain the
family of complete sets of order 1 of �

�1(�) :=
⋃

i=1,...,r

�1(i).
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A brief examination shows that features (a) and (b) remain
valid when the strings α1, α2, . . ., αn(i) of (3.1) include
complete sets of order 1, i.e., when α, α1, α2, . . ., αn(i) ∈
(A∪�1(�))∗. Substituting into (3.2), this creates the fam-
ily �2(i) of complete sets of order 2 associated with the
indeterminate pair (zi, ui). As before, the entire family of
complete sets of order 2 of � is then

�2(�) :=
⋃

i=1,...,r

�2(i).

It is convenient to define

�0(�) := {α ∈ A∗|α takes � along a path that includes

no indeterminate pairs}. (3.3)

In general, assuming that the family �p(�) of complete
sets of order p of � has been created for an integer p ≥ 1,
define the set γ p+1(i) by

γ p+1(i) :=
{

ui,1α1 + ui,2α2 + · · · + ui,n(i)αn(i)

∣∣∣∣ α1, α2, . . ., αn(i) ∈ [(∪j=0,...,p�
j(�)

)]∗
and

sa(zi, ui,1α1) = sa(zi, ui,2α2) = · · · = sa(zi, ui,n(i)αn(i))

}
.

(3.4)

Then, family �p+1(i) of all complete sets of order p + 1
associated with the indeterminate pair (zi, ui) is

�p+1(i) :=

⎧⎪⎪⎨
⎪⎪⎩αγ p+1(i)

∣∣∣∣∣∣∣∣
α ∈ [(∪j=0,...,p�

j(�)
)]∗

takes
� from a determinate pair to
the indeterminate pair (zi, ui),
and γ p+1(i) is given by (3.4).

⎫⎪⎪⎬
⎪⎪⎭

(3.5)

Finally, the family of all complete sets of order p + 1 of
� is

�p+1(�) :=
⋃

i=1,2,...,r

�p+1(i).

Definition 3.1: A complete set of � is any member of the
family

�(�) :=
⋃

p=0,1,2,...

�p(�). �

A complete set includes a response to every possible
outcome of every indeterminate transition encountered
along its way, and all these responses ultimately lead the
machine to the same stable state. Note that each complete
set of � is associated with a specific valid pair of the
adjusted machine �a at which the input sequences of the

complete set start to act. This can be a determinate or an
indeterminate pair.

The following notation is convenient. For a set of states
Y ⊆ X and a set of strings γ ⊆ (Ã)∗, denote

sa(Y , γ ) :=
{

sa(x, u)

∣∣∣∣ x ∈ Y , u ∈ γ , and
(x, u) is a valid pair.

}
.

The significance of complete sets originates from the
fact that they are intimately related to the existence of state
feedback controllers that induce determinate transitions in
an indeterminate machine, as follows.

Theorem 3.2: Let � be an indeterminate machine with
the adjusted machine �a = (Ã, X, x0, sa), and let x and x′
be two states of �. Then, the following two statements are
equivalent.

(i) There is a state feedback controller that takes �

through a determinate transition from x to x′ in
fundamental mode operation.

(ii) There is a complete set γ satisfying sa(x, γ ) = x′.

Proof: Assume first that (i) is valid, and let C be a state
feedback controller for which the closed loop machine
�c has a determinate transition from x to x′ in funda-
mental mode operation. Then, C generates a response
for every outcome of every indeterminate transition of
� encountered along the way from x to x′, and each of
these responses takes � to x′. Translating all responses
of C to actions on the adjusted machine �a, let γ ⊆
(Ã)+ be the set of all extended alphabet strings gener-
ated by C while taking �a from x to x′. We have to show
that γ is a complete set. Let p be the maximal num-
ber of indeterminate transitions that � encounters as it
is guided by C from x to x′. We prove (ii) by induction
on p.

First, for p = 0, the controller C generates an input
string γ ∈ A∗ that takes �a from x to x′ without encoun-
tering any indeterminate transitions of �, so we have
γ ∈ �0(�) by (3.3). Hence, γ is a complete set when
p = 0. Next, assume that γ is a complete set for an integer
p = q ≥ 0, and consider the case p = q + 1.

Let (zi, ui) ∈ X × A be the first indeterminate pair that
� encounters as it is being taken by C from x to x′, and
let α ∈ A+ be the string that takes � from x to zi. Also,
let {zi,1, . . ., zi,n(i)} be the set of potential next stable states
of (zi, ui), and let ui, j be the pseudo character that leads
�a from the state zi to the state zi, j. Then, C must gener-
ate a response αi, j ⊆ (Ã)+ to each outcome zi, j, and this
response induces a determinate transition from zi, j to x′,
j = 1, 2, . . ., n(i). Along this path, � cannot encounter
more than q indeterminate pairs, since the pair (zi, ui)

has already been encountered and is therefore excluded
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from the count. Thus, by our induction assumption,
αi, j ⊆ �q(�) for all j = 1, 2, . . ., n(i). Summarizing,
we have γ = α(ui,1αi,1 + ui,2αi,2 + · · · + ui,n(i)αi,n(i))

with αi, j ⊆ �q(�) for all j = 1, 2, . . ., n(i); by (3.5),
this shows that γ ∈ �q+1(�), and (i) implies (ii) by
induction.

Conversely, assume that (ii) is valid, and let γ be
a complete set of �. We use γ to construct a con-
troller C that induces a determinate transition from x
to x′. To this end, assume that a controller imple-
menting the first k steps of a member of γ has been
built. If this brings � to a determinate pair, then, in
step k + 1, the controller applies to � the next char-
acter of the string. If � encounters an indeterminate
pair (zi, ui) at step k, then, in view of (3.4) and (3.5),
the complete set γ prescribes the next input character
ui, j that must be applied to � at each outcome zi, j

of (zi, ui). The construction of [13, Proof of Theorem
4.3] allows us to build a controller that generates the
character ui, j when detecting the state zi, j. Continuing
this construction step-by-step as in the reference, we
obtain from γ a controller C that drives � through a
determinate transition from x to x′. This concludes our
proof.

The length |γ | of a set of strings γ ⊆ (Ã)+ is the number
of characters in the longest member of γ .

Proposition 3.3: Let �a = (X , Ã, x0, sa) be an adjusted
machine with n states. If there is a complete set γ that
takes �a from a stable combination with a state x to a
stable combination with a state x′, then there also is such
a complete set γ ′ of length |γ ′| ≤ n − 1.

Proof: Let A be the original input alphabet of the machine
�, let A′ be the pseudo input alphabet of �a, and let u =
u1u2. . .u|u| ∈ (Ã)∗ be a member of γ of length |u| ≥ n.
While �a is driven by u from a stable combination with the
state x to a stable combination with the state x′, it encoun-
ters n + 1 or more states, say the states x0, x1, x2, . . ., x|u|,
where x0 := x, x|u| := x′, and xi+1 = sa(xi, ui+1),
i = 0, 1, . . ., |u| − 1. Consider the combinations (x0, u1),
(x1, u2), . . ., (x|u|−1, u|u|), (x|u|, u|u|) encountered along the
way, where the last pair is the stable combination at the end
state x′. Note that, except for the last pair, all pairs in this
list are transient combinations leading to the next stable
state of �a: each pair (xi, ui+1), i = 0, 1, . . ., |u|−1, comes
after a stable combination (xi, ui) of �a and leads to the
next stable combination (xi+1, ui+1) of �a. Note also that
changing the input character ui+1 in the pair (xi, ui+1) to
another input character will not compromise fundamen-
tal mode operation, since this input character is applied
while �a is in its previous stable combination (xi, ui). Such
a string of pairs is generated for each member of γ ; let

γ × ⊆ (X × Ã)∗ be the set of all such strings of state/input
pairs generated when strings of γ are applied to �a as
inputs.

Now, considering that �a has only n states, the string
of pairs (x0, u1), (x1, u2), . . ., (x|u|−1, u|u|), (x|u|, u|u|) must
include two steps i 	= j, 0 ≤ i < j ≤ |u|, at
which xi = xj. Denote ξ := xi = xj, u′ := ui, and
u′′ := uj. We distinguish now between the following
cases.

Case 1. (ξ , u′), (ξ , u′′) ∈ X × A, i.e., (ξ , u′) and (ξ , u′′)
are both determinate pairs of �:
Denote by γ ((ξ , u′), (ξ , u′′)) the subset of γ × that
consists of all strings of state/input pairs in which
the pair (ξ , u′) appears strictly before the pair
(ξ , u′′).

Consider a typical member v = v1v2. . .v|v| ∈
γ ((ξ , u′), (ξ , u′′)). Denote by k1(v) the step num-
ber at which the pair (ξ , u′) appears in v, and by
k2(v) the step number at which the pair (ξ , u′′)
appears in v. Then, by our selection of the
members of γ ((ξ , u′), (ξ , u′′)), we have k2(v) >

k1(v). The precise values of k1(v) and k2(v)
may vary from one member of γ ((ξ , u′), (ξ , u′′))
to another. Now, replace every member v ∈
γ ((ξ , u′), (ξ , u′′)) by the shortened string v′ :=
v1v2. . .vk1(v)−1vk2(v). . .v|v| obtained by excising
the segment vk1(v), vk1(v)+1, . . ., vk2(v)−1 from v;
here, vk1(v)−1 := ∅ when k1(v) = 1. Denote
by γ ×

1 the resulting set of strings of state/input
pairs, and let γ1 be the corresponding set of input
strings. By construction, some strings of γ1 are
strictly shorter than the strings of γ from which
they originate. As no indeterminate pairs were
modified in this process, it follows that γ1 is still
a complete set.

Case 2. (ξ , u′) ∈ X × A′, namely, u′ is a pseudo input
character, while (ξ , u′′) ∈ X × A, i.e., u′′ is an
original input character:
Denote by A′(ξ , u′) the set of all pseudo charac-
ters associated with the indeterminate transition
of which (ξ , u′) represents one option. Now, con-
sider a member v = v1v2. . .v|v| ∈ γ ×; denote
by k1(v) the position of the pair (ξ , u′) in v,
and by k2(v) the position of the pair (ξ , u′′)
in v, where k2(v) > k1(v). As γ is a com-
plete set, γ × must include, for every member
u ∈ A′(ξ , u′), a string that starts with the same
k1(v) − 1 terms as v and has the pair (ξ , u) in
position k1(v); that is, a string of the form v(u) =
v1v2 · · · vk1(v)−1(ξ , u)vk1(v)+1(u) · · · Excising
the segment (ξ , u)vk1(v)+1(u) · · · vk2(v(u))−1(u),
replace each string of the form v(u) in γ × by
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the string v′(u) := v1v2. . .vk1(v)−1vk2(v(u))(u). . .

v|v(u)|(u). Repeat this process for every u ∈
A′(ξ , u′). Denote by γ ×

1 the resulting set of
strings of pairs, and let γ1 be the corresponding
set of input strings. Note that every string v(u)

was shortened by this process, while no strings
were made longer. Since all remaining indeter-
minate transitions in γ ×

1 are identical to their
counterparts in γ ×, it follows that γ1 is still a
complete set.

Case 3. (ξ , u′) ∈ X × A, while (ξ , u′′) ∈ X × A′, i.e., u′ is
an original input character, while u′′ is a pseudo
input character:
Let A′(ξ , u′′) be the set of all pseudo characters
associated with the indeterminate transition of
which (ξ , u′′) represents one option. Now, con-
sider a member v = v1v2. . .v|v| ∈ γ ×; denote
by k1(v) the position of the pair (ξ , u′) in v, and
by k2(v) the position of the pair (ξ , u′′) in v,
where k2(v) > k1(v). As γ is a complete set, γ ×
must contain, for every member u ∈ A′(ξ , u′′),
a string of pairs v(u) = v1v2 · · · vk1(v) · · ·
vk2(v)−1(ξ , u)vk2(v)+1(u) · · · that starts with the
same k2(v) − 1 terms and has the pair
(ξ , u) in position k2(v). Excising the segment
vk1(v) · · · vk2(v)−1, replace each such string of
pairs by the shortened string v′(u) := v1v2 · · ·
vk1(v)−1(ξ , u) vk2(v)+1(u) · · · Repeat this process
for every u ∈ A′(ξ , u′′). Denote by γ ×

1 the result-
ing set of strings of state/input pairs, and let γ1
be the corresponding set of input strings. As in
Case 2, the length of some strings was reduced by
this process, while no strings were made longer.
Also, since all remaining branches of indetermi-
nate transitions are not affected, it follows that γ1
is still a complete set.

Case 4. (ξ , u′), (ξ , u′′) ∈ X × A′, i.e., u′ and u′′ are both
pseudo input characters:
Then, (ξ , u′) originates from an indeterminate
pair of �, say from the indeterminate pair (zi, ui).
Let A′(ξ , u′) = {ui,1, . . ., ui,n(i)} be the set of all
pseudo characters associated with the indeter-
minate pair (zi, ui). Similarly, (ξ , u′′) originates
from an indeterminate pair of �, say the pair
(z j, u j); let A′(ξ , u′′) = {uj,1, . . ., uj,n(j)} be the
set of all pseudo characters associated with the
indeterminate pair (z j, u j).
Consider now a member v = v1v2. . .v|v| ∈ γ ×;
denote by k1(v) the position of the pair (ξ , u′)
in v, and by k2(v) the position of the pair (ξ , u′′)
in v, where k2(v) > k1(v). As γ is a complete set,
γ × must contain a response for every outcome
of every indeterminate pair encountered; namely,
for every member u2 ∈ A′(ξ , u′′), there must be a

string of pairs

v(u2) = v1v2 · · · vk1(v)−1(ξ , u′)vk1(v)+1 · · ·
vk2(v)−1(ξ , u2)vk2(v)+1(u

2) · · ·
that starts with the same k2(v) − 1 terms and has
the pair (ξ , u2) in position k2(v). Excising the
segment (ξ , u′)vk1(v)+1 · · · vk2(v)−1, we obtain the
set of shortened strings

γ − := {
v1v2 · · · vk1(v)−1(ξ , u2)vk2(v)+1(u

2)
∣∣u2

∈ A′(ξ , u′′)
}
.

Next, using again the fact that γ is a complete
set, it follows that γ × must include, for every
member u1 ∈ A′(ξ , u′), a string with the prefix
v(u1) := v1v2 · · · vk1(v)−1(ξ , u1). Denote by δ the
set of all members of γ × that have this prefix,
namely,

δ := {
v ∈ γ ×∣∣v has a prefix v(u1) for some

u1 ∈ A′(ξ , u′)
}
.

Now, delete all members of δ from γ × and, there-
after, add the members of γ − to the resulting new
set; denote by γ ×

1 the set of strings of state/input
pairs obtained by this process. Let γ1 be the
set of input strings corresponding to γ ×

1 . As in
Case 2, this process shortens some of the input
strings of γ , while not making any strings longer.
Also, since all branches of indeterminate transi-
tions that remain in the set are preserved in the
form they had in γ , it follows that γ1 is still a
complete set.

Finally, if still |γ1| ≥ n, perform on γ1 the shortening
operations performed on γ above. This process can be
continued until a complete set of length not exceeding
n − 1 is obtained.

3.2. Reduced Sets of Input Sequences

In view of Theorem 3.2, a complete set of strings indicates
the existence of a state feedback controller that generates a
determinate transition between two states of an indetermi-
nate asynchronous machine; the transition may or may not
include indeterminate segments. Now, consider two states
x and x′ of the adjusted machine �a, and let S ⊆ (Ã)∗ be
the set of all strings that take �a from a stable combina-
tion with x to a stable combination with x′. If S includes
a complete set γ , then there is a state feedback controller
that implements a determinate transition from x to x′, irre-
spective of the outcomes of indeterminate transitions that
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may be encountered along the way. Clearly, the presence
or absence of additional members of S outside of γ has
no implications in this regard. Thus, when concentrating
on the existence of state feedback controllers that achieve
determinate transitions, it is convenient to ignore members
of S outside of γ . Doing so simplifies calculations and
reduces clutter. This motivates the following definition of
addition with a complete set in the semiring A:

γ + α = γ for any complete set γ and

any set of strings α ⊆ (Ã)∗. (3.6)

A brief examination shows that the concatenation of
two complete sets yields another complete set, and the
following is valid.

Proposition 3.4: Let �a be an adjusted machine, and let
x, x′, and x′′ be states of �a. Let γ and γ ′ be complete sets
of sequences, where γ takes �a from a stable combination
with x to a stable combination with x′, while γ ′ takes �a

from a stable combination with x′ to a stable combination
with x′′. Then, the concatenation γ γ ′ is a complete set
that takes �a from a stable combination with x to a stable
combination with x′′.

Proposition 3.4 and Equation (3.6) help us simplify
expressions and remove superfluous terms without com-
promising information about the existence of state feed-
back controllers that induce determinate transitions. Note
that (3.6) also applies when γ is a single string of
characters of the original alphabet A, namely, when
γ ∈ �0(�).

Example 3.5: Consider the adjusted machine �a of
Example 2.4. According to Table 2, the set of input strings
S that take �a from the state x2 to the state x1 is

S = {c1 + c2b + da2b + · · · }.
Now, according to (3.4), the combination c1 + c2b is
a complete set of strings. Thus, using (3.6), we can
write S = {c1 + c2b}, a significant simplification which,
by Theorem 3.2, indicates that a determinate transition
from x2 to x1 can be implemented by a state feedback
controller. �

Definition 3.6: A set of input strings S ⊆ (Ã)+ is
reducible if it can be simplified into a complete set by using
(3.6) and Proposition 3.4; otherwise, S is irreducible. A
reducible set is in reduced form when it is expressed as a
complete set. �

In view of our earlier discussion and Theorem 3.2,
reducible sets represent transitions that can be imple-
mented in determinate form by a state feedback controller.
Therefore, the problem of determining the existence of
such a state feedback controller can be resolved through

simple algebraic manipulations within the ring A. This
proves an important point of our discussion, and we state
it in the following.

Theorem 3.7: Let � be an asynchronous machine with
adjusted machine �a, and let S(x, x′) ⊆ (Ã)+ be the set
of all strings that take �a from a stable combination with
a state x to a stable combination with a state x′. Then, the
following two statements are equivalent.

(i) There is a state feedback controller that takes �

through a determinate transition from x to x′ in
fundamental mode operation.

(ii) S(x, x′) is a reducible set. �

Note that the reduced form of a set is, in general, not
unique.

4. Stable Reachability

4.1. Determinate and Indeterminate Transitions

The matrix of stable transitions of [13] characterizes the
stable transitions of an asynchronous machine; it plays a
critical role in the process of solving a variety of control
problems. In the present section, we extend the defini-
tion of this matrix to machines that include indeterminate
transitions. With this in mind, consider an indeterminate
asynchronous machine � = (A, X, x0, f ) with a state set
X = {x1, . . . , xn} of n states, and let �a = (Ã, X, x0, sa)

be the adjusted machine associated with �. Denote by
(Ã)(n−1) the set of all strings consisting of n − 1 or fewer
characters of the extended alphabet Ã. For two integers
p, q ∈ {1, . . ., n} and an integer i > 0, define the set of
strings

αi(p, q) := {
u ∈ (Ã)(i)

∣∣ sa(x
p, u) = xq},

and let N be a character not in the alphabet Ã.

Definition 4.1: Let � be an indeterminate asynchronous
machine with n states. The adjusted matrix of stable
transitions Ra(�) is the n × n matrix whose (p, q) entry is

Ra
pq(�) :=

{
αn−1(p, q) if αn−1(p, q) 	= ∅,
N else,

p, q = 1, 2, . . ., n.
The one-step adjusted matrix of stable transitions

Ra(�, 1) is the n × n matrix with the entries

Ra
pq(�, 1) :=

{
α1(p, q) if α1(p, q) 	= ∅,
N else,

p, q = 1, 2, . . ., n. �
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We extend the semiring A to handle the character N by
setting

Nα = αN = N for all α ∈ (Ã)+,

N + α = α + N = α for all α ∈ (Ã)+.

Then, with the operations of the semiring A, we can use
the usual definition of matrix multiplication to obtain the
powers (Ra(�, 1))i, i = 1, 2, . . ., and we can construct the
combination

(Ra(�))(i) := Ra(�, 1)+(Ra(�, 1))2 +· · ·+(Ra(�, 1))i.

It can be seen that

Ra(�) = (Ra(�, 1))(n−1) (4.1)

(compare to [13]).

Example 4.2: For the machine of Example 2.4, we have

Ra(�, 1) =⎛
⎜⎜⎝

{b + c + c1} {a} N N
{c1} {a + a1} {d} {c2}
N {a1} {d} {a2}
{b} N N {a + c + d + a2 + c2}

⎞
⎟⎟⎠ .

�

In the case of a determinate machine �, there are no
pseudo input characters, so Ã = A, and Definition 4.1
reduces to the definition of the matrix of stable transitions
given in [13]. The latter publication proves a statement
analogous to the following.

Proposition 4.3: Let �a be an adjusted asynchronous
machine with the state set X = {x1, . . ., xn}, the extended
input alphabet Ã, and the adjusted matrix of stable tran-
sitions Ra(�). Then, the following two statements are
equivalent.

(i) There is an input string u ∈ (Ã)+ that takes �a from
a stable combination with the state xi to a stable
combination with the state x j in fundamental mode
operation.

(ii) Ra
ij(�) 	= N. �

Example 4.4: Using (4.1), we calculate the adjusted
matrix of stable transitions for the machine � of Exam-
ple 2.4 and obtain the following.

Ra(�) =

⎛
⎜⎜⎜⎝

Ra
11(�) Ra

12(�) Ra
13(�) Ra

14(�)

Ra
21(�) Ra

22(�) Ra
23(�) Ra

24(�)

Ra
31(�) Ra

32(�) Ra
33(�) Ra

34(�)

Ra
41(�) Ra

42(�) Ra
43(�) Ra

44(�)

⎞
⎟⎟⎟⎠ ,

where

Ra
11(�) = {aa1c1 + ac1 + ac1b + ac1c + ac2b + b

+ bac1 + bc + bcb + bcc1 + bc1 + bc1b

+ bc1c + c + cac1 + cb + cbc + cbc1 + cc1

+ cc1b + cc1c + c1 + c1ac1 + c1b + c1bc

+ c1bc1 + c1c + c1cb + c1cc1}
Ra

12(�) = {a + aa1 + aa1a + ac1a + ada1 + ba + baa1

+ bca + bc1a + ca + caa1 + cba + c1a

+ c1aa1 + c1ba + c1ca}
Ra

13(�) = {aa1d + ad + bad + cad + c1ad}
Ra

14(�) = {aa1c2 + ac2 + ac2a + ac2a2 + ac2c + ac2d

+ ada2 + bac2 + cac2 + c1ac2}
Ra

21(�) = {aa1c1 + ac1 + ac1b + ac1c + ac2b + a1ac1

+ a1c1 + a1c1b + a1c1c + a1c2b + c1

+ c1ac1 + c1b + c1bc + c1bc1 + c1c + c1cb

+ c1cc1 + c2ab + c2a2b + c2b + c2bc

+ c2bc1 + c2cb + c2db + da1c1 + da2b}
Ra

22(�) = {a + aa1 + aa1a + ac1a + ada1 + a1 + a1a

+ a1aa1 + a1c1a + a1da1 + c1a + c1aa1

+ c1ba + c1ca + c2ba + da1 + da1a}
Ra

23(�) ={aa1d + ad + a1ad + a1d + c1ad + d + da1d}
Ra

24(�) = {aa1c2 + ac2 + ac2a + ac2a2 + ac2c + ac2d

+ ada2 + a1ac2 + a1c2 + a1c2a + a1c2a2

+ a1c2c + a1c2d + a1da2 + c1ac2 + c2

+ c2a + c2aa2 + c2ac + c2ac2 + c2ad

+ c2a2 + c2a2a + c2a2c + c2a2c2 + c2a2d

+ c2c + c2ca + c2ca2 + c2cc2 + c2cd + c2d

+ c2da + c2da2 + c2dc + c2dc2 + da1c2

+ da2 + da2a + da2c + da2c2 + da2d}
Ra

31(�) = {a1ac1 + a1c1 + a1c1b + a1c1c + a1c2b

+ a2ab + a2b + a2bc + a2bc1 + a2cb

+ a2c2b + a2db + da1c1 + da2b}
Ra

32(�) = {a1 + a1a + a1aa1 + a1c1a + a2ba

+ da1 + da1a}
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Ra
33(�) = {a1ad + a1d + d + da1d}

Ra
34(�) = {a1ac2 + a1c2 + a1c2a + a1c2a2 + a1c2c

+ a1c2d + a2 + a2a + a2aa2 + a2ac

+ a2ac2 + a2ad + a2c + a2ca + a2ca2

+ a2cc2 + a2cd + a2c2 + a2c2a + a2c2a2

+ a2c2c + a2c2d + a2d + a2da + a2da2

+ a2dc + a2dc2 + da1c2 + da2 + da2a

+ da2c + da2c2 + da2d}
Ra

41(�) = {aa2b + ab + abc + abc1 + acb + ac2b

+ adb + a2ab + a2b + a2bc + a2bc1 + a2cb

+ a2c2b + a2db + b + bac1 + bc + bcb

+ bc1 + bc1b + bc1c + bcc1 + cab + ca2b

+ cb + cbc + cbc1 + cc2b + cdb + c2ab

+ c2a2b + c2b + c2bc + c2bc1 + c2cb

+ c2db + dab + da2b + db + dbc

+ dbc1 + dcb + dc2b}
Ra

42(�) = {aba + a2ba + ba + baa1 + bca + bc1a

+ cba + c2ba + dba}
Ra

43(�) = {bad}
Ra

44(�) = {a + aa2 + aa2a + aa2c + aa2c2 + aa2d

+ ac + aca + aca2 + acc2 + acd + ac2

+ ac2a + ac2a2 + ac2c + ac2d + ad

+ ada + ada2 + adc + adc2 + a2 + a2a

+ a2aa2 + a2ac + a2ac2 + a2ad + a2c

+ a2ca + a2ca2 + a2cc2 + a2cd + a2c2

+ a2c2a + a2c2a2 + a2c2c + a2c2d + a2d

+ a2da + a2da2 + a2dc + a2dc2 + bac2

+ c + ca + caa2 + cac + cac2 + cad + ca2

+ ca2a + ca2c + ca2c2 + ca2d + cc2 + cc2a

+ cc2a2 + cc2c + cd + cda + cda2 + cdc

+ cdc2 + c2 + c2a + c2aa2 + c2ac + c2ac2

+ c2ad + c2a2 + c2a2a + c2a2c + c2a2c2

+ c2a2d + c2c + c2ca + c2ca2 + c2cc2

+ c2cd + cc2d + c2d + c2da + c2da2

+ c2dc + c2dc2 + d + da + daa2

+ dac + dac2 + dad + da2 + da2a

+ da2c + da2c2 + da2d + dc + dca

+ dca2 + dcc2 + dcd + dc2 + dc2a + dc2a2

+ dc2c + dc2d + dc2}. �

The entries of the adjusted matrix of stable transitions
can be simplified by reduction, and this leads us to the
following notion.

Definition 4.5: Let � = (A, X, x0, f ) be an indeterminate
asynchronous machine with the adjusted matrix of stable
transitions Ra(�). The reduced matrix of stable transitions
R(�) is obtained when every reducible entry of Ra(�) is
expressed in reduced form; entries that are not reducible
are left in their original form. �

As the reduced form of a set is not unique, neither is the
reduced matrix of stable transitions. In view of Proposi-
tions 4.3 and 3.3, the reduced matrix of stable transitions
characterizes all determinate stable transitions that can be
achieved in the machine � by state feedback controllers
that operate in fundamental mode, as follows.

Corollary 4.6: Let � be an asynchronous machine with
the state set X = {x1, x2, . . ., xn} and the reduced matrix
of stable transitions R(�). Then, the following two state-
ments are equivalent for every pair of states xi, x j ∈ X.

(i) There is a state feedback controller that takes �

through a determinate transition from a stable com-
bination with xi to a stable combination with x j in
fundamental mode operation.

(ii) Rij(�) is a complete set. �

Example 4.7: Reducing the adjusted matrix of stable
transitions of Example 4.4, we obtain a reduced matrix
of stable transitions of the machine � of Example 2.4:

R(�) =

⎛
⎜⎜⎜⎝

{b} {a} {ad} R14(�)

{γ1} {a} {d} R24(�)

{γ2} {γ3} {d} R34(�)

{b} {ba} {bad} {a}

⎞
⎟⎟⎟⎠ ,

where γ1 := c1 + c2b, γ2 = a1γ1 + a2b, and
γ3 = a1 + a2ba are complete sets; the entries
R14(�), R24(�), and R34(�) are irreducible and are given
in Example 4.4. �

The information contained in the reduced matrix of sta-
ble transitions can be further condensed by the following
notion (compare to [13]).

Definition 4.8: Let � = (A, X, x0, f ) be an indeterminate
asynchronous machine with n states and with the reduced
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matrix of stable transitions R(�). Let 	 be a character not
in the set Ã ∪ {N}. Then, the skeleton matrix K(�) is an
n × n matrix with the entries

Kij(�) :=

⎧⎪⎨
⎪⎩

1 if Rij(�) is a complete set,

0 if Rij(�) = N ,

	 if Rij(�) is irreducible,

i, j = 1, 2, . . ., n. �

In the skeleton matrix, transitions indicated by 1 can
be implemented in determinate form by a state feedback
controller operating in fundamental mode; transitions
indicated by 0 are impossible; and transitions indicated by
	 are indeterminate – they may or may not be possible,
depending on the outcomes of indeterminate transitions
along the way.

Example 4.9: Based on the reduced matrix of stable tran-
sitions of Example 4.7, the skeleton matrix of the machine
� of Example 2.4 is given by

K(�) =

⎛
⎜⎜⎝

1 1 1 	

1 1 1 	

1 1 1 	

1 1 1 1

⎞
⎟⎟⎠ . �

4.2. Connected Sets of States

An asynchronous machine may, and often does, have a
large number of states. The following notion helps reduce
the computational burden of calculating controllers for a
machine with many states.

Definition 4.10: Let � = (A, X , x0, f ) be an input/state
asynchronous machine with the state set X = {x1, . . ., xn}
and the skeleton matrix K(�). A subset χ of states
is a connected set if Kij(�) = Kji(�) = 1 for
every pair of states xi, x j ∈ χ . The connected set
that includes the initial state x0 is the initial connected
set χ0. �

A connected set of the machine � is characterized
by the fact that every two of its members are mutually
stably reachable from each other through a determinate
transition, possibly driven by a state feedback controller
operating in fundamental mode. Note that membership
in a connected set is an equivalence relation. Indeed, the
relation is reflexive, since every state has a stable com-
bination and hence belongs to its own connected set;
the relation is commutative, since, by definition, xi is
connected to x j if and only if x j is connected to xi;
and, finally, by Proposition 3.4, the relation is transitive

Fig. 4. Finding a connected set.

as well. Thus, the state set X = {x1, x2, . . ., xn} of �

is partitioned into a union of disjoint connected sets,
say X = χ1 ∪ χ2 ∪ . . . ∪ χm, where m ≤ n. Of
course, some of these connected sets may include just
a single state, while others may include many states.
The following statement describes a simple way to find
the largest connected set to which a particular state
belongs.

Proposition 4.11: Let � = (A, X, x0, f ) be an asyn-
chronous machine with the state set X = {x1, . . ., xn} and
the skeleton matrix K(�). Fix an integer i ∈ {1, 2, . . ., n}.
For every j ∈ {1, 2, . . ., n} for which Kij(�) 	= 1 or
Kji(�) 	= 1, cross out column j and row j of K(�). Then,
the remaining columns (or, equivalently, the remaining
rows) of K(�) represent the largest connected set that
includes xi.

Proof: Let χ be the largest connected set that includes the
state xi. By Definition 4.10, a state x j is a member of χ if
and only if Kij(�) = 1 and Kji(�) = 1. The proposition
follows directly from this fact.

Example 4.12: Applying the process of Proposition 4.11
to the skeleton matrix of Example 4.9, we obtain the
outcome for the state x1 as in Fig. 4. From Fig. 4, it
follows that the largest connected set that includes x1 is
χ = {x1, x2, x3}. �

By definition, members of a connected set are all
stably reachable from each other through determinate
transitions (possibly driven by a state feedback con-
troller operating in fundamental mode). As a result,
when one member of a connected set χ is stably
reachable from a state x of � by a determinate tran-
sition, then every member of χ is stably reachable
from x by a determinate transition; and vice versa:
when a state x is stably reachable from one mem-
ber of χ by a determinate transition, then x is sta-
bly reachable from every member of χ by a deter-
minate transition. Accordingly, when discussing sta-
ble reachability, each connected set can be considered
as one integral unit. This leads us to the following
notion.
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Table 3. The recursion function of the diminished realiza-
tion.

Z a b c d a1 a2 c1 c2

z1 z1 z1 z1 z1 z1 z2 z1 z2

z2 z2 z1 z2 z2 − z2 − z2

Definition 4.13: Let � = (A, X , x0, f ) be an indetermi-
nate asynchronous machine with the adjusted machine
�a = (Ã, X, x0, sa) and the class of connected sets
{χ1, . . . , χm}. Let Z = {z1, z2, . . ., zm} be a set of m
elements, and let P(Z) be the family of subsets of Z .
A diminished realization (Ã, Z , z0, σ) of � has the input
alphabet Ã; the state set Z , where zi represents the con-
nected set χ i, i = 1, 2, . . ., m; and the initial condition
z0 ∈ Z that represents the initial connected set. For an
element z ∈ Z , denote by χ(z) the connected set of states
corresponding to z.

A pair (z, u) ∈ Z × Ã is valid if (x, u) is a valid pair
of �a for a state x ∈ χ(z). The recursion function σ :
Z × Ã → P(Z) is a partial function defined for all valid
pairs (z, u) ∈ Z × Ã by

σ(z, u) := {
z′ ∈ Z

∣∣ sa(x, u) ∈χ(z′) for a state x ∈ χ(z)
}
.

�

The recursion function σ of Definition 4.13 is usually
set valued: its values consist of all connected sets that can
be reached from its argument. A diminished realization
may have a smaller number of states than the original
realization. As a result, computations with diminished
realizations may have a lower computational complexity.
In the sequel, we use diminished realizations to analyze
control features of indeterminate asynchronous machines.

Example 4.14: For the machine � of Example 2.4, we
have seen in Example 4.12 that the family of connected
sets consists of the two members

χ1 := {x1, x2, x3} and χ2 := {x4}.
Using the diminished state set Z = {z1, z2}, we obtain
the recursion function σ of the diminished realization as
shown in Table 3. �

The diminished matrix of stable transitions Rd(�), the
one-step diminished matrix of stable transitions Rd(�, 1),
and the diminished skeleton matrix Kd(�) of an asyn-
chronous machine � are defined, respectively, as the
reduced matrix of stable transitions, the one-step matrix of
stable transitions, and the skeleton matrix of a diminished
realization of �. All three matrices are m × m rather than
n × n, where m is the number of connected sets, while
n ≥ m is the number of states of �. These matrices can be

derived either by combining blocks corresponding to con-
nected sets in the reduced matrices of the original machine
�, or by direct use of the diminished stable recursion func-
tion of �. The former method is described in the following
statement.

Proposition 4.15: Let � be an indeterminate asyn-
chronous machine with state set X = {x1, . . ., xn}, dimin-
ished state set {z1, . . ., zm}, matrix of stable transitions
R(�), and skeleton matrix K(�). Let χ(zi) be the con-
nected set of states corresponding to the diminished
state zi. Then, for each pair of integers i, j ∈ {1, 2, . . ., m},
the corresponding entries of the diminished matrices are
given by

(i) Rd
ij(�) = ⋃

{p:xp∈χ(zi)}
{q:xq∈χ(z j)}

Rpq(�) written in reduced form; and

(ii) Kd
ij (�) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 if Kpq(�) = 1 for any pair of states
xp ∈ χ(zi), xq ∈ χ(z j),

	 if Kpq(�) = 	 for any pair of states
xp ∈ χ(zi), xq ∈ χ(z j),

0 if Kpq(�) = 0 for any pair of states
xp ∈ χ(zi), xq ∈ χ(z j).

Proof: Let sa be the adjusted stable recursion function of
� and let σ be the diminished stable recursion function.
For two integers i, j ∈ {1, 2, . . ., m}, consider two states
xp ∈ χ(zi) and xq ∈ χ(z j) of �. By Definition 4.13, a
string u ∈ (Ã)+ satisfies sa(xp, u) = xq if and only if z j ∈
σ(zi, u). This implies (i). Regarding (ii), it follows from
the definition of a connected set that the following are true:
Krt(�) = Kr′t′(�) = Kd

ij (�) for all pairs (r, t), (r′, t′) for

which xr , xr′ ∈ χ(zi) and xt , xt′ ∈ χ(z j). Hence, (ii) is
valid and our proof is complete.

Example 4.16: Referring to the machine � of Exam-
ple 2.4, recall that, according to Example 4.14, the
connected sets of � are χ(z1) = {x1, x2, x3} and χ(z2) =
{x4}. Then, applying Proposition 4.15(i) to the matrix
R(�) of Example 4.7 and reducing the resulting entries,
we obtain

Rd(�) =
(

Rd
11(�) Rd

12(�)

Rd
21(�) Rd

22(�)

)
, (4.2)

where

Rd
11(�) =

⋃
p∈{1,2,3}
q∈{1,2,3}

Rpq(�) = {b} (in reduced form),
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Rd
12(�) =

⋃
p∈{1,2,3}

q=4

Rpq(�)

= {bac2 + cac2 + aa1c2 + ac2 + ac2a + ac2a2

+ ac2c + ac2d + ada2 + a1ac2 + a1c2

+ a1c2a + a1c2a2 + a1c2c + a1c2d + a1da2

+ c1ac2 + c2 + c2a + c2a + c2aa2 + c2ac

+ c2ac2 + c2ad + c2a2 + c2a2a + c2a2c

+ c2a2c2 + c2a2d + c2c + c2ca + c2ca2

+ c2cc2 + c2cd + c2d + c2da + c2da2

+ c2dc + c2dc2 + da1c2 + da2 + da2a

+ da2c + da2c2 + da2d + a2 + a2a + a2aa2

+ a2ac + a2ac2 + a2ad + a2c + a2ca

+ a2ca2 + a2cc2 + a2cd + a2c2 + a2c2a

+ a2c2a2 + a2c2c + a2c2d + a2d + a2da

+ a2da2 + a2dc + a2dc2} (irreducible),

Rd
21(�) =

⋃
p=4

q∈{1,2,3}

Rpq(�) ={b} (in reduced form),

and

Rd
22(�) =

⋃
p=4
q=4

Rpq(�) ={a} (in reduced form).

Similarly, applying Proposition 4.15(ii) to the matrix
K(�) of Example 4.9, we obtain

Kd(�) =
(

1 	

1 1

)
.

The same result can also be obtained, of course, from the
matrix Rd(�) listed above. �

The significance of the diminished skeleton matrix is
brought to light in the next section.

5. Model Matching

We turn now to the construction of state feedback con-
trollers that elicit desirable behavior from a given inde-
terminate asynchronous machine by guiding the closed
loop system to match a prescribed model. To this end, let
� = (A, X, x0, f ) be an indeterminate input/state machine
connected to a state feedback controller C as described
in Fig. 1, and let �′ = (A, X , x0, s′) be a specified deter-
minate model. The objective is to find a controller C for

which the closed loop machine �c exhibits stable-state
behavior that simulates �′. For such a controller C, we
write �c = �′.

The model �′ is a determinate stable state asynchronous
machine with the same input alphabet and the same state
set as the controlled machine �. Let K(�) be the skeleton
matrix of the machine �, and let K(�′) be the skeleton
matrix of the model �′. When � has no indeterminate
transitions, [13, Theorem 5.1] states that a controller C
satisfying �c = �′ exists if and only if

K(�) ≥ K(�′), (5.1)

where the inequality is taken entry-by-corresponding-
entry.

When the machine � has indeterminate transitions, its
skeleton matrix K(�) may include entries of the charac-
ter 	; such entries indicate transitions whose outcome is
indeterminate and not known a-priori. Clearly, when an
entry of 	 in K(�) appears in a position corresponding to
an entry of 1 in K(�′), model matching cannot be guaran-
teed in advance. On the other hand, an entry of 	 in K(�)

that appears in a position corresponding to an entry of 0 in
K(�′) has no direct bearing on model matching, since the
transition it represents is not required when matching the
model �′. All these considerations can be incorporated
into the inequality (5.1) by considering 	 as a number
satisfying

0 < 	 < 1. (5.2)

With the assignment (5.2), inequality (5.1) continues to
serve as a necessary and sufficient condition for model
matching when indeterminate transitions are present.

Once an indeterminate transition of � is tested and its
outcome is recorded, some of the 	 entries of the skeleton
matrix K(�) may change: an entry of 	 turns into 0 if the
outcome of the test shows that the corresponding transition
is impossible; an entry of 	 turns into 1 if the outcome of
the test shows that the corresponding transition is possi-
ble; and, finally, the entry remains 	 if the corresponding
transition depends on other indeterminate transitions that
have not yet been tested. Accordingly, for an indetermi-
nate machine �, the skeleton matrix K(�) may change
with time, as outcomes of more and more indeterminate
transitions become known.

Next, we show that condition (5.1) continues to remain
valid when skeleton matrices are replaced by their dimin-
ished counterparts. This results in a potential reduction of
the problem’s dimensionality. First, however, we have to
clarify what is meant by the diminished skeleton matrix
of a model.

Definition 5.1: Let � be an input/state asynchronous
machine with the state set X = {x1, . . ., xn} and a family
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Fig. 5. The model �′.

of m connected sets {χ1, . . ., χm}. Let �′ be a determinate
input/state asynchronous machine with the same state set
X, and let K(�′) be its skeleton matrix. The diminished
skeleton matrix Kd(�′, �) of �′ relative to � is an m ×m
matrix with the entries

Kd
ij (�

′, �) :=
⎧⎨
⎩

1 if there are states xp ∈ χ i and
xq ∈ χ j for which Kpq(�

′) = 1,
0 otherwise,

i, j = 1, . . ., m. �

The diminished skeleton matrix of �′ relative to � indi-
cates the transitions that �′ can make among connected
sets of �. As we show shortly, these transitions among
connected sets must also be possible for �, if � can be
controlled to match the model �′.

Example 5.2: Consider the machine � of Example 2.4
with the model �′ shown in Fig. 5.

A direct examination shows that the skeleton matrix of
�′ is

K(�′) =

⎛
⎜⎜⎝

1 1 1 1
1 1 1 1
0 0 1 0
1 1 1 1

⎞
⎟⎟⎠ .

In Example 4.14, we have seen that the connected sets of
the machine � are χ1 = {x1, x2, x3} and χ2 = {x4}, so
that m = 2 in this case. Applying Definition 5.1, we obtain

Kd(�′, �) =
(

1 1
1 1

)
. �

Diminished skeleton matrices can be used to determine
whether or not model matching is possible, as follows.

Proposition 5.3: Let � be an asynchronous machine with
the state set X = {x1, . . ., xn} and the family of con-
nected sets {χ1, . . ., χm}, and let �′ be a determinate
asynchronous machine with the same state set X. Let
K(�), K(�′), Kd(�), and Kd(�′, �) be the correspond-
ing skeleton and diminished skeleton matrices. Then,
K(�) ≥ K(�′) if and only if Kd(�) ≥ Kd(�′, �).

Proof: Note that, by Definition 5.1, the matrix Kd(�′, �)

has only entries of 0 or 1. Assume first that K(�) ≥ K(�′),
and consider a pair of integers p, q ∈ {1, 2, . . ., n} for
which Kpq(�

′) = 1. Then, since K(�) ≥ K(�′), we
must have Kpq(�) = 1 as well. Now, let i, j ∈ {1, . . ., m}
be integers such that xp ∈ χ i and xq ∈ χ j. In view of
Proposition 4.15 and Definition 5.1, we have Kd

ij (�) = 1

and Kd
ij (�

′, �) = 1, so that Kd
ij (�) ≥ Kd

ij (�
′, �). As the

latter is true for all i, j ∈ {1, . . ., m}, we conclude that
Kd(�) ≥ Kd(�′, �).

Conversely, assume that Kd(�) ≥ Kd(�′, �) and
consider a pair of integers i, j ∈ {1, . . ., m} for which
Kd

ij (�
′, �) = 1. As Kd(�) ≥ Kd(�′, �), it follows

that Kd
ij (�) = 1 as well. By Proposition 4.15, the lat-

ter implies that there is a pair of states xp′ ∈ χ i and
xq′ ∈ χ j for which Kp′q′(�) = 1; by Definition 4.10, this
entails that Kpq(�) = 1 for all integers p, q ∈ {1, 2, . . ., n}
for which xp ∈ χ i and xq ∈ χ j. But then, we have
Kpq(�) ≥ Kpq(�

′) for all p, q ∈ {1, 2, . . ., n} for which
xp ∈ χ i and xq ∈ χ j. Finally, since this conclusion is valid
for all i, j ∈ {1, . . ., m}, it follows that K(�) ≥ K(�′), and
our proof concludes.

The use of diminished skeleton matrices allows us to
analyze and solve control problems in lower dimensional-
ity, and hence with lower computational effort. Combining
Proposition 3.3 with the discussion following (5.1), we
obtain the following.

Theorem 5.4: Let � = (A, X, x0, f ) be an asynchronous
machine with the diminished skeleton matrix Kd(�), let
�′ = (A, X, x0, s′) be a determinate stable state machine
serving as a model, and let Kd(�′, �) be the diminished
skeleton matrix of �′ relative to �. Then, the following
two statements are equivalent.

(i) There is a state feedback controller C for which �c =
�′, where �c operates in fundamental mode.

(ii) Kd(�) ≥ Kd(�′, �). �

The most convenient way to determine whether model
matching is possible is by examining the inequality of
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Theorem 5.4(ii). This inequality may fail under the
following circumstances.

1. Kd(�) has an entry of 0 in a position in which
Kd(�′, �) has an entry of 1; or

2. Kd(�) has an entry of 	 in a position in which
Kd(�′, �) has an entry of 1.

In Case 1, model matching is definitely impossible. How-
ever, in Case 2, the feasibility of model matching depends
on the outcome of one or more indeterminate transitions
of �; if the outcome turns out favorably, then model
matching is possible.

To handle Case 2, the controller C of Fig. 1 can be
designed to test automatically the outcomes of certain
indeterminate transitions. As long as such testing is con-
fined to transient transitions of the closed loop machine
�c, it does not interfere with user experience. This aspect
of controller design is discussed in the next two sections.

6. Comparison and Reduction

When controlling indeterminate asynchronous machines,
it is instrumental to develop controllers that automatically
test indeterminate transitions and record their outcomes.
Such controllers must satisfy two requirements: (i) they
must operate in fundamental mode when combined with
the controlled machine; and (ii) they must not disturb
user experience. We start with an examination of the first
requirement.

6.1. Detectability

Consider an indeterminate asynchronous machine � =
(A, X, x0, f ). Recall from Definition 2.1 that the recursion
function f of � is a set valued function whose values indi-
cate the possible outcomes of indeterminate transitions.
Let (x, u) ∈ X × A be a valid indeterminate pair of �;
then, f (x, u) is its set of possible outcomes. A troublesome
case occurs when the set f (x, u) includes the state x itself
together with another state, say, z 	= x. In such case, (x, u)

is a stable combination if the outcome of the transition is x;
however, (x, u) is a transient combination if the outcome
of the transition is z. Consequently, when encountering the
pair (x, u) for the first time, it is impossible to tell whether
� is in a stable combination or not. This makes fundamen-
tal mode operation impossible. Thus, in order to preserve
fundamental model operation, we cannot access any inde-
terminate pair (x, u) whose set of potential outcomes
includes the state x itself. This leads us to the following.

Definition 6.1: Let � = (A, X , x0, f ) be an indeterminate
asynchronous machine. A valid pair (x, u) ∈ X × A is
detectable if either x /∈ f (x, u) or f (x, u) = {x}. �

In view of the previous paragraph, fundamental mode
operation of an indeterminate asynchronous machine is
impossible if a non-detectable pair is activated. To assure
that the latter does not occur, we adjust the domain of
the machine’s recursion function by reclassifying all non-
detectable pairs as invalid pairs; this effectively prohibits
access of non-detectable pairs.

Convention 6.2: For asynchronous machines considered
in this paper, all non-detectable pairs are reclassified as
invalid pairs. �

Convention 6.2 guarantees that detectability is not an
obstacle in the remaining parts of this paper and, on
this account, we shall ignore detectability altogether from
now on.

6.2. Comparison Matrices

When an indeterminate asynchronous machine � =
(A, X, x0, f ) is inserted into the configuration of Fig. 1,
the controller C may automatically test and record the
outcomes of some indeterminate transitions of �. Such a
testing and recording process is intended to improve the
performance of the closed loop machine �c; it must be
performed without interfering with user experience. We
proceed to develop an algorithm that governs the controller
C during such testing.

For the sake of simplicity, all testing considered in this
paper is performed immediately upon activation of the
closed loop machine �c, before any commands are applied
at the external input ω of Fig. 1. All testing starts and ends
with � being in its initial state x0. Similar testing can be
repeated at every stable combination of �.

To avoid disturbing user experience, all testing must be
confined to strings of transient transitions of the closed
loop machine �c. And, since we restrict ourselves to test-
ing in the initial state x0 of �, all testing strings must start
with � being at x0 and must return � with certainty to
x0 at the end of testing. This means that testing must be
confined to complete sets of strings that take the adjusted
machine �a in round trips that start and end at x0. Our first
objective is to determine which indeterminate transitions
of � must be tested.

Consider the problem of controlling the machine � to
match a model �′. Let Kd(�) be the m × m diminished
skeleton matrix of � and let Kd(�′, �) be the dimin-
ished skeleton matrix of �′ with respect to �. In view
of Theorem 5.4, the existence of a solution of the model
matching problem depends on a favorable comparison
of these two skeleton matrices. Clearly, only entries of
Kd(�) that are juxtaposed to entries of 1 in Kd(�′, �)

need to be examined. Of these, entries of 0 are prohibitive
to model matching, while entries of 1 are permissive;
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entries of 	, on the other hand, impart an uncertainty
that can be resolved only through testing of indetermi-
nate transitions of �. To help single out the indeterminate
transitions that must be tested, define the set of pairs

D′(�′, �) :={
(i, j) ∈ {1, . . ., m} × {1, . . ., m}∣∣ Kd

ij (�) = 	 and

Kd
ij (�

′, �) = 1
}
,

and set

D(�′, �) :=⎧⎨
⎩

∅ if Kd
ij (�) = 0 while Kd

ij (�
′, �) = 1

for some i, j ∈ {1, . . ., m};
D′(�′, �) otherwise.

(6.1)

Example 6.3: Consider the machine � of Example 2.4
with the model �′ of Example 5.2. Using (6.1) with the
matrix Kd(�) of Example 4.16 and the matrix Kd(�′, �)

of Example 5.2, we obtain D(�′, �) = {(1, 2)}. �

Now, recall the pseudo alphabet A′ of (2.4), and denote
by P(S) the class of all subsets of a set S. Define the
projection �′ : (Ã)+ → P(A′) that extracts all pseudo
characters from strings t ∈ (Ã)+, namely,

�′t := {v ∈ A′ | v is a character of t }.
For a list of strings t1, t2, . . ., tq ∈ (Ã)+, the projection �′
creates a list of sets, where each set consists of the pseudo
characters included in one of the strings:

�′{t1 + t2 + · · · + tq} := {
�′t1, �′t2, . . ., �′tq

}
.

We use commas to separate the members of the resulting
list. Duplicate members are listed only once.

Example 6.4: For the entry Rd
12(�) of (4.2) we have

�′Rd
12(�) = �′{bac2 + cac2 + aa1c2 + ac2 + ac2a

+ ac2a2 + ac2c + ac2d + ada2 + a1ac2

+ a1c2 + a1c2a + a1c2a2 + a1c2c

+ a1c2d + a1da2 + c1ac2 + c2

+ c2a + c2a + c2aa2 + · · ·
}

=
{
{c2}, {a1, c2}, {a2, c2}, {a2}, {a1, a2, c2},

{a1, a2}, {c1, c2}
}

.

(A single representative is listed for duplicate
members.) �

Sets of pseudo characters that are critical to model
matching are characterized as follows.

Definition 6.5: Let � = (A, X, x0, f ) be an asynchronous
machine with the connected sets {χ1, . . ., χm}, and let �′
be a model. Let Rd(�) be the diminished matrix of stable
transitions of � and let D(�′, �) be given by (6.1). The
comparison matrix of � relative to �′ is an m × m matrix
S(�′, �) with the entries

Sij(�
′, �) :=

{
�′Rd

ij(�) if (i, j) ∈ D(�′, �),
∅ otherwise,

i, j = 1, 2, . . ., m. �

An entry of the comparison matrix is a family of sets of
pseudo input characters. Each member of the (i, j) entry
consists of the pseudo input characters that appear in one
string of Rd

ij(�). These pseudo characters induce transi-
tions that facilitate a move of � from a stable combination
with a state of the connected set χ i to a stable combina-
tion with a state of the connected set χ j. Testing of these
transitions determines the feasibility of such transitions,
and hence the feasibility of model matching.

Example 6.6: Using the results of Examples 6.3 and 6.4,
we obtain the comparison matrix

S(�′, �) =⎛
⎜⎝∅

{
{c2}, {a1, c2}, {a2, c2}, {a2}, {a1, a2, c2}, {a1, a2}, {c1, c2}

}

∅ ∅

⎞
⎟⎠ .

�

Referring to Definition 2.3 of the pseudo alphabet A′,
recall that every pseudo character v ∈ A′ is associated
with an original input character u(v) ∈ A and with two
states z(v), z′(v) of � satisfying z′(v) = sa(z(v), v) ∈
s(z(v), u(v)). Here, (z(v), u(v)) is an indeterminate pair,
and z′(v) is one of the possible next stable states of
(z(v), u(v)). If z′′ 	= z′(v) is another possible outcome
of the indeterminate pair (z(v), u(v)), then it is associated
with a different pseudo input character w 	= v, where
z(w) = z(v), u(w) = u(v), z′(w) = z′′, and z′(w) =
sa(z(w), w) ∈ s(z(w), u(w)). In brief, each pseudo char-
acter is uniquely associated with a distinct outcome of an
indeterminate pair.

Suppose now that the indeterminate pair (z(v), u(v)) is
tested; denote by z′

true the outcome of the test, namely,
the actual next stable state attained by � after applying
(z(v), u(v)). As � is a deterministic machine, z′

true will
always be the next stable state of (z(v), u(v)) for the present
sample of �. Define the true stable recursion function
strue : X × A → X by setting

strue(z(v), u(v)) := z′
true.
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The function strue describes the outcome of testing the
machine; it is not known a-priori.

Recall that the entries of the comparison matrix
S(�′, �) indicate indeterminate transitions of the machine
� that must be tested in order to determine whether model
matching is possible. Specifically, consider a non-empty
entry Sij(�

′, �). By Definition 6.5, this entry consists of a
number of subsets of pseudo input characters; each subset
comprises all pseudo input characters included in one of
the strings that take the adjusted machine �a from a sta-
ble combination with a state of the connected set χ i to a
stable combination with a state of the connected set χ j.
If the true stable transition function is compatible with all
the transitions indicated by the pseudo characters of one
of these subsets, then a stable transition from χ i to χ j is
possible in �.

Proposition 6.7: Let � = (A, X , x0, f ) be an asyn-
chronous machine with the diminished skeleton matrix
Kd(�), the adjusted stable recursion function sa, and the
true stable recursion function strue. Let �′ = (A, X, x0, s′)
be a model, and let S(�′, �) be the comparison matrix
of �′ relative to �. For a pseudo character v ∈ A′, let
(z(v), u(v)) ∈ X × A be the indeterminate state/input pair
associated with v. Then, for any pair of integers i, j for
which Kd

ij (�) = 	, the following two statements are
equivalent.

(i) Kd
ij (�) turns into 1 after testing.

(ii) There is a member θ ∈ Sij(�
′, �) in which

strue(z(v), u(v)) = sa(z(v), v) for all v ∈ θ .

Proof: Let Rd(�) be the diminished matrix of stable tran-
sitions of �. By the definition of Kd(�), the following two
statements are equivalent for all i, j ∈ {1, 2, . . ., m}:
(i) Kd

ij (�) = 1 after testing.

(a) Rd
ij(�) includes a string t all of whose indeter-

minate transitions become true in testing, namely,
strue(z(v), u(v)) = sa(z(v), v) for every pseudo char-
acter v included in t.

In view of Definition 6.5, statement (a) is equivalent to
statement (ii) of the Proposition. Thus, (i) is equivalent to
(ii), and our proof concludes.

Proposition 6.7 forms the basis of a testing algorithm
that determines whether or not model matching is possi-
ble with a given indeterminate machine. This algorithm
depends on the comparison matrix S(�′, �).

6.3. Simplifying the Comparison Matrix

Often, parts of the comparison matrix S(�′, �) can be
removed without impairing its role. Indeed, consider a
non-empty entry Sij(�

′, �), and assume that it includes

two members θ , θ ′ satisfying θ ⊆ θ ′. Then, clearly, test-
ing θ ′ implies testing of θ . However, if θ is tested and
condition (ii) of Proposition 6.7 holds for θ , then Kd

ij (�)

turns into 1 after testing θ , and there is no need to test the
larger set θ ′. Thus, θ ′ can be deleted from the comparison
matrix. This helps simplify the matrix.

Definition 6.8: Let S(�′, �) be the m × m comparison
matrix of � relative to �′. For every pair of integers i, j ∈
{1, 2, . . ., m} and for every pair of distinct members θ , θ ′ ∈
Sij(�

′, �) for which θ ⊆ θ ′, delete the member θ ′ from
Sij(�

′, �). The resulting matrix Sr(�′, �) is the reduced
comparison matrix of � relative to �′. �

Example 6.9: For the comparison matrix of Example 6.6,
we obtain the reduced comparison matrix

Sr(�′, �) =
(

∅ {{a2}, {c2}}
∅ ∅

)
,

a substantial simplification. �

Our discussion in this subsection indicates that Propo-
sition 6.7 remains valid when the comparison matrix is
replaced by the reduced comparison matrix, as follows.

Corollary 6.10: Let � = (A, X, x0, f ) be an asyn-
chronous machine with the diminished skeleton matrix
Kd(�), the adjusted stable recursion function sa, and the
true stable recursion function strue. Let �′ = (A, X, x0, s′)
be a model, and let Sr(�′, �) be the reduced comparison
matrix of �′ relative to �. For a pseudo character v ∈ A′,
let (z(v), u(v)) ∈ X × A be the indeterminate state/input
pair associated with v. Then, for every pair of integers i, j
for which Kd

ij (�) = 	, the following two statements are
equivalent.

(i) Kd
ij (�) = 1 after testing.

(ii) There is a member θ ∈ Sr
ij(�

′, �) in which
strue(z(v), u(v)) = sa(z(v), v) for all v ∈ θ . �

Using Corollary 6.10, we build in the next section a
testing algorithm to determine whether model matching is
possible.

7. Testing Indeterminate Transitions

7.1. Testable Transitions

Our next goal is to characterize those indeterminate tran-
sitions that can be tested in the initial state. To be specific,
consider an indeterminate machine � = (A, X, x0, f ) with
the state set X = {x1, x2, . . ., xn}, the skeleton matrix
K(�), and the adjusted machine �a := (Ã, X, x0, sa). To
demonstrate the testing process, we restrict ourselves to



522 J.-M. Yang et al.

testing in the initial state, where the controller C drives
� in fundamental mode operation along round trips that
start and end at the initial state x0. A similar process can
be used to test � in any stable state.

Testing in the initial state can involve only states of the
following set, as these are the only states with a guaranteed
route back to the initial state

ρ0 := {
xi ∈ X

∣∣ Kij(�) = 1,

where x0 = x j is the initial state
}
. (7.1)

Example 7.1: For the machine � of Example 2.4 with the
initial state x0 = x1, a direct examination of Example 4.9
shows that ρ0 = X , the entire state set of �. �

Note that ρ0 cannot be empty, since we always have
Kjj(�) = 1 and whence x0 = x j ∈ ρ0. However, if ρ0

includes only the initial state, then, clearly, testing in the
initial state is not meaningful.

Now, in order to be able to test an indeterminate pair
(x, u), it must be possible to reach the state x from the
initial state x0, at least for some outcomes of indeterminate
transitions. Thus, x must be a member of the set

S0 := {
xi ∈ X

∣∣ Kji(�) 	= 0,

where x0 = x j is the initial state
}
. (7.2)

Note that S0 	= ∅ since Kjj(�) = 1.

Example 7.2: For the machine � of Example 2.4, it
follows by Example 4.9 that S0 = X , the entire
state set. �

Having reached the state x, it must always be possible
to drive � back to the initial state x0 from any outcome
of (x, u). Thus, letting s be the stable recursion function
of �, we conclude that any testable pair (x, u) must be a
member of the set

T(�, x0) := {
(x, u) ∈ S0 × A

∣∣ (x, u) is a valid pair and

s(x, u) ⊆ ρ0}. (7.3)

Example 7.3: For the machine � of Example 2.4, it fol-
lows by Examples 7.1 and 7.2 that T(�, x0) consists of all
valid pairs of �. �

We summarize our discussion thus far in the following
statement.

Proposition 7.4: Let � = (A, X , x0, f ) be an indetermi-
nate asynchronous machine with stable recursion function
s, and let S0 and ρ0 be given by (7.2) and (7.1), respec-
tively. Then, an indeterminate pair of � can be tested
in the initial state only if it belongs to the set T (�, x0)

of (7.3). �

Let �x : X × A → X : �x(x, u) := x be the projection
onto the state. Then, by Proposition 7.4, testing in the
initial state can involve only states of the set

�xT(�, x0).

Some members of this set may not be reachable in a par-
ticular sample of �, since the set S0 of (7.2) includes
outcomes of indeterminate transitions. Equivalently, some
members of T(�, x0) may not be available for testing
in a particular sample of �. A brief examination shows
that all pairs whose testing can be guaranteed a-priori are
characterized by the following.

Proposition 7.5: Let � be an indeterminate asyn-
chronous machine with skeleton matrix K(�) and initial
state x0 = x j, and let T(�, x0) be given by (7.3).
Then, the following two statements are equivalent for an
indeterminate pair (x, u) of �.

(i) (x, u) can always be tested, irrespective of the out-
comes of any indeterminate transitions.

(ii) (x, u) is a member of the set

τ(�, x0) := {
(xi, u) ∈ T(�, x0)

∣∣ Kji(�) = 1
}
. � (7.4)

In view of Proposition 7.5, we refer to τ(�, x0) as the
set of certainly testable pairs.

Example 7.6: For the machine � of Example 2.4, it fol-
lows from Example 4.9 that τ(�, x0) consists of all valid
pairs within {x1, x2, x3} × A. �

Let {(z1, u1), . . ., (zr , ur)} be the set of all indeterminate
pairs of the machine �, and let Ai be the set of pseudo
characters associated with the indeterminate pair (zi, ui),
as described in (2.3). Denote by A′(�, x0) the set of all
pseudo characters associated with the set T(�, x0) of (7.3),
namely,

A′(�, x0) =
⋃

{i|(zi ,ui)∈T(�,x0) }
Ai. (7.5)

By Proposition 7.4, pseudo characters outside this set
cannot be tested in the initial state. Similarly,

A′
c(�, x0) =

⋃
{i|(zi ,ui)∈τ(�,x0) }

Ai (7.6)

is the set of all pseudo characters that can be tested for
sure. The difference set A′(�, x0) \ A′

c(�, x0) consists of
pseudo characters that can be tested only for some samples
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Table 4. The family T of complete sets.

Entire entry The family T of complete sets (only a few terms are listed in each case)
⋃

t∈T �′t
(Ra(�, 1))11 {· · · } ∅

(Ra(�, 1))
(2)
11 {· · · } ∅

(Ra(�, 1))
(3)
11 {aγ1, aγ2, aγ3} {c1, c2}

(Ra(�, 1)
(4)
11 {(Ra(�, 1))

(3)
11 , aγ1b, aγ2b, aγ3b, aγ1c, aγ2c, aγ3c, baγ1, · · · , caγ1, · · · } {c1, c2}

(Ra(�, 1)
(5)
11 {(Ra(�, 1)

(4)
11 , bcaγ1, bcaγ2, bcaγ3, cbaγ1, · · · , adγ4, · · · } {a1, a2, c1, c2}

of �: samples that have favorable outcomes of appropriate
indeterminate transitions.

Example 7.7: For the machine � of Example 2.4, the
initial state is x0 = x1. Considering Examples 7.3 and 7.6,
it follows that

A′(�, x0) = A′
c(�, x0) = A′ = {a1, a2, c1, c2},

namely, all pseudo characters appear in both sets in this
case. �

The next statement provides a bound on the complexity
of testing all indeterminate transitions that can be tested in
the initial state. It also provides a basis for selecting testing
strings by specifying the family T of the statement. This
family consists of complete strings that take � through
round trips from the initial state back to the initial state,
passing through every indeterminate pair that is certainly
testable.

Lemma 7.8: Let � = (A, X , x0, f ) be an indeterminate
asynchronous machine with the state set {x1, . . ., xn}, the
initial state x0 = xα , and the one-step matrix of sta-
ble transitions Ra(�, 1), and let A′

c(�, x0) be the set
of certainly testable pseudo characters given by (7.6).
Then,

(i) There is an integer μ > 0 such that the entry
(Ra(�, 1))

(μ)
αα includes a family T of complete strings

satisfying A′
c(�, x0) ⊆ ⋃

t∈T �′t, and
(ii) μ ≤ 2n − 1.

Proof: Let {(z1, u1), . . ., (zr , ur)} be the set of indetermi-
nate pairs of the machine �. In view of Proposition 7.5,
the indeterminate pair (zi, ui) is certainly testable if and
only if (zi, ui) ∈ τ(�, x0). If τ(�, x0) includes no inde-
terminate pairs, then (i) and (ii) are valid with T being
the empty set and μ = 0. Otherwise, there is an integer
i ∈ {1, 2, . . ., r} such that (zi, ui) ∈ τ(�, x0). Then, by
(7.4), there is a complete set vi ∈ (Ã)+ that takes �a from
the initial state x0 to a stable combination with the state zi.
In view of Proposition 3.3, we can select vi to have n − 1
or fewer steps.

At the state zi, apply the character ui and denote by
zi, j the resulting next stable state. By (7.4), it follows that
there is a complete set wi, j ∈ (Ã)+ that takes �a from a
stable combination with zi, j to a stable combination with
the initial state x0 = xα . Applying again Proposition 3.3,
we conclude that wi, j can be taken to have n − 1 or fewer
steps. Thus, the input set γ := viuiwi, j induces a round
trip from x0 back to x0 passing through the indeterminate
pair (zi, ui), and it satisfies |γ | ≤ 2(n − 1) + 1 = 2n − 1.
As this is valid for all i = 1, . . ., r and all j = 1, 2, . . ., n(i),
our proof concludes.

Example 7.9: Consider the machine � of Example 2.4.
In our case, x0 = x1, so that α = 1. Using Example 4.2,
we examine entry (1, 1) of consecutive powers of Ra(�, 1)

in Table 4, where γ1 := c1 + c2b, γ2 := (c1 + c2)b,
γ3 := c1c + c2b, and γ4 := a1γ1 + a2b are complete sets.
As we can see, all pseudo characters of � appear in the
last row of the table. This demonstrates Lemma 7.8(ii),
since μ = 5 and n = 4 here. �

Remark 7.10: Let � be an indeterminate asynchronous
machine. Referring to (7.5) and (7.4), consider the case
when A′(�, x0) 	= A′

c(�, x0). Then, members of the
difference set A′(�, x0) \ A′

c(�, x0) can be tested only
under particular outcomes of some indeterminate transi-
tions of �. In such case, it is convenient to employ multiple
rounds of testing.

To this end, let �1 be the asynchronous machine
obtained after the outcomes of initial testing were incorpo-
rated as determinate transitions into �. The machine �1

is a new indeterminate machine with a new set A′
c(�

1, x0)

of pseudo characters associated with certainly testable
transitions. After testing �1 and recording the outcomes
of all tested indeterminate transitions, we obtain the
asynchronous machine �2, and so on.

This process continues until no more indeterminate
transitions can be reached for testing. Let �i be the
asynchronous machine obtained after incorporating the
outcomes of indeterminate transitions tested in the i-th
round of testing. Then, testing terminates when the dimin-
ished skeleton matrix stops changing, namely, when
Kd(�i) = Kd(�i+1). �
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7.2. An Algorithm for Testing

We are ready now to present a mechanism by which the
controller C of Fig. 1 can automatically test indeterminate
transitions of the controlled machine �. It goes without
saying that only indeterminate transitions that are rele-
vant to the model matching problem at hand need to be
tested. As before, we restrict ourselves to testing in the
initial state, namely, to testing that starts and ends at the
initial state of � and is performed when the controller C
is turned on. The restriction to testing in the initial state
comes only to shorten the presentation; testing with sim-
ilar protocol can be performed in any stable state of the
controlled machine �.

During testing, the controller follows the algorithm
below. This algorithm directs the controller to take the
closed loop machine �c through a chain of transient transi-
tions that starts and ends at the initial state x0 of �. In brief
terms, the algorithm can be described as follows. First,
the algorithm finds all indeterminate pairs of � that can
potentially be tested (see (7.3)); their associated pseudo
characters are given by (7.5). If none of these pseudo char-
acters appear in the reduced comparison matrix Sr(�′, �),
then the algorithm terminates, since testing cannot resolve
any meaningful indeterminacies. Otherwise, the algorithm
proceeds to apply to the machine � strings of the set T
of Lemma 7.8 and records the outcome of any indeter-
minate transitions of � encountered. These outcomes are
then used to update the skeleton matrix of �, potentially
replacing some entries of 	 by entries of 0 or 1. The pro-
cess repeats until all strings of T have been exhausted, or
until the existence (or non-existence) of a model matching
controller can be ascertained.

The entire process of testing is implemented by the
controller C of Fig. 1 as a string of transient transi-
tions of the closed loop machine �c. As transients occur
very quickly in asynchronous machines (ideally, in zero
time), this testing process does not interfere with user
experience.

Algorithm 7.11 (Testing in the Initial State): Let � =
(A, X, x0, f ) be an indeterminate asynchronous machine
with adjusted machine �a = (Ã, X , x0, sa), state set
X = {x1, . . ., xn}, initial state x0 = xα , family of connected
sets� = {χ1, . . ., χm}, true stable recursion function strue,
initial connected set χ0, one-step matrix of stable transi-
tions Ra(�, 1), and diminished skeleton matrix Kd(�).
Let �′ = (A, X, x0, s′) be a model with diminished skele-
ton matrix Kd(�′, �) relative to �, and let Sr(�′, �) be
the reduced comparison matrix.

Step 0. Set β := 0 and Kd(�, 0) := Kd(�).
Step 1. Let A′(�, x0) be given by (7.5). If no pseudo char-

acters of A′(�, x0)appear in the matrix Sr(�′, �),

then testing of indeterminate transitions in the
initial state is not meaningful; go to Step 9.

Step 2. Let T and μ be as given in Lemma 7.8, and
let t1, t2, . . ., tq be the complete sets of strings
included in T. Define the subsets of pseudo char-
acters θi := �′ti, i = 1, 2, . . ., q. Replace β

by β + 1, set j := 1, and set Kd(�, β) :=
Kd(�, β − 1).

Step 3. If θj has no characters in common with the matrix
Sr(�′, �), then go to Step 7.

Step 4. Apply the complete set of strings tj to the machine
� in fundamental mode operation, as follows:
After each character, wait until � has reached its
next stable state and record it.
Based on the stable state reached by �, select the
subsequent input character v; if v is a pseudo char-
acter, apply to � the original character u(v) ∈ A
associated with v.
Continue in this character-by-character manner
until � returns to its initial state x0.

Step 5. Using the results of Step 4, partition the set θj into
two disjoint subsets θ+

j and θ−
j , where θ+

j consists
of all pseudo input characters v ∈ θj for which
strue(z(v), u(v)) = sa(z(v), v), and θ−

j := θj \ θ+
j

(the set difference).
Step 6. Perform sub-steps (a) to (d) below for every pair of

integers p, � ∈ {1, . . ., m}, where m is the number
of connected sets in the family �:

(a) If there is a member θ of Sr
p�(�

′, �) satisfying

θ ⊆ θ+
j , then assign Kd

p�(�, β) := 1, and
replace Sr

p�(�
′, �) by the empty set.

(b) Replace every member θ of Sr
p�(�

′, �) by the

difference set θ \ θ+
j .

(c) Remove from Sr
p�(�

′, �) every member that is

not disjoint with θ−
j . If this turns Sr

p�(�
′, �)

into the empty set, assign Kd
p�(�, β) := 0;

then, if Kd
p�(�

′, �) = 1, set Kd(�) :=
Kd(�, β) and go to Step 9 (model matching
is not possible).

(d) If Kd(�, β) ≥ Kd(�′, �), then set Kd(�) :=
Kd(�, β) and go to Step 9 (model matching
is possible).

Step 7. If j < q, replace j by j + 1 and return to Step 3.
Step 8. If Kd(�, β) 	= Kd(�, β − 1), then recalculate

the family of connected sets � of �, the one-
step matrix of stable transitions Ra(�, 1), the
diminished skeleton matrix Kd(�), the dimin-
ished skeleton matrix Kd(�′, �), and the reduced
comparison matrix Sr(�′, �). Set Kd(�, β) :=
Kd(�) and Return to Step 1.
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Step 9. Output the matrices Kd(�) and Kd(�′, �), and
terminate the algorithm. �

Remark 7.12: To shorten the presentation in this paper,
we restrict testing to the initial state of the tested
machine �. The same principles can be used to test inde-
terminate transitions of � in any stable state x of � by
designing the controller C to drive � in round trips from x
back to x. This would encompass all testing of indetermi-
nate transitions of � that is possible in fundamental mode
operation. �

According to the next statement, Algorithm 7.11 can be
implemented within the controller C of Fig. 1 to test and
determine automatically whether or not a desired model
can be matched. This determination is made before the
closed loop machine �c receives any external operational
commands. If the desired model turns out to be unmatch-
able, the model can be altered to a compatible model before
operational use of the closed loop machine commences.

Theorem 7.13: Let � = (A, X , x0, f ) be an asynchronous
machine, let �′ = (A, X , x0, s′) be a model, and let Kd(�)

and Kd(�′, �) be the outcomes of Algorithm 7.11. Then,
the following are valid:

(i) Algorithm 7.11 can be implemented by a state feed-
back controller in fundamental mode operation.

(ii) Statements (a) and (b) are equivalent:

(a) Testing in the initial state determines that there is
a controller C achieving �c = �′ in fundamental
mode operation.

(b) Kd(�) ≥ Kd(�′, �).

(iii) If there is a pair of integers i, j for which Kd
ij (�) = 0

while Kd
ij (�

′, �) = 1, then there is no controller
satisfying �c = �′ in fundamental mode operation.

(iv) If there is a pair of integers i, j for which Kd
ij (�) = 	

while Kd
ij (�

′, �) = 1, then testing in the initial state
cannot determine whether there exists a controller C
for which �c = �′ in fundamental mode operation.

Proof: (i) Refer to Step 4 of Algorithm 7.11. In the nota-
tion of the algorithm, consider a complete set of strings
tj ∈ T = {t1, t2, . . ., tq}, and let v ∈ Ã be a character
of tj. Denote by u(v) ∈ A the original input character
associated with v. By Convention 6.2, all state/input pairs
of � are detectable. Thus, a state feedback controller can
determine when the machine � has reached its next stable
state in response to the input character u(v). Consequently,
for each j = 1, 2, . . ., q, a state feedback controller C′

j that
implements the complete set of strings tj can be built using
the construction of [13, proof of Theorem 5.1]. Denote
by Cj the state feedback controller obtained by adding

Table 5. The true stable recursion function.

State a b c d

x1 x2 x1 − −
x2 x2 − x4 x3

x3 x2 − − x3

x4 − x1 x4 x4

to C′
j memory to record the outcomes of all encountered

indeterminate transitions.
Now, combine the controllers C1, . . ., Cq into a sin-

gle sequential controller CT by activating Cj+1 when
Cj detects a return of � to the initial state x0,
j = 1, 2, . . ., q − 1. Then, the controller CT implements
Step 4 of Algorithm 7.11 in fundamental mode operation,
and we conclude that (i) is valid.

Statements (ii), (iii), and (iv) follow from Corollary 6.10,
Theorem 5.4, and Remark 7.10. This completes our
proof.

Remark 7.14: Once the controller has completed
Algorithm 7.11 and has determined that model match-
ing is possible, it activates a model matching compo-
nent that is constructed as described in [13, proof of
Theorem 5.1]. �

Example 7.15: Consider the problem of designing a con-
troller C for the indeterminate machine � of Example 2.4
to match the model �′ of Example 5.2. Assume that the
true stable recursion function strue of � (which is to be
obtained from the testing described below) is as shown in
Table 5.

To determine whether there is a controller C that solves
the requisite model matching problem with this sam-
ple of �, we use Algorithm 7.11 and Theorem 7.13.
According to Example 6.9, we must test only the entry
Sr

12(�
′, �) = {{a2}, {c2}}. Recall that the initial condi-

tion of the machine � is the state x0 = x1, which is
included in the connected set χ1 = {x1, x2, x3}; the one-
step adjusted matrix of stable transition Ra(�, 1) is given
in Example 4.2. We perform testing in the initial state x1

of � using Algorithm 7.11.
According to Example 7.9, we have

T = {a(c1 + c2b), · · · , ad[a1(c1 + c2b) + a2b], · · · }
=: {t1, · · · , t2, · · · };

here, we listed only one representative from each class of
complete sets with the same pseudo characters. According
to (7.5), we have

A′(�, x0) = A′
c(�, x0) = {a1, a2, c1, c2}.

Step 0. Set β := 0 and Kd(�, 0) := Kd(�), where
Kd(�) is given in Example 4.16.
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Step 1: As A′(�, x0) and Sr(�′, �) have pseudo charac-
ters in common, continue to Step 2.

Step 2: θ1 := �′t1 = {c1, c2}, and θ2 := �′t2 =
{a1, a2, c1, c2}; set j := 1.

Step 3: Recall from Example 6.9 that Sr
12(�

′, �) =
{{a2}, {c2}}. As θ1 has the pseudo character c2

in common with Sr
12(�

′, �), proceed to the next
step.

Step 4: In view of Example 2.4, we have u(c1) = c
and u(c2) = c, namely, c is the real charac-
ter that corresponds to the pseudo characters c1

and c2. Therefore, based on the complete set
t1 = a(c1 + c2b), drive the machine � as fol-
lows:
At the initial state x0 = x1, apply the input char-
acter a to reach the stable state x2.
Upon reaching x2, apply to � the input character
c = u(c1) = u(c2), which activates an indetermi-
nate transition of �.
According to Table 5, the next stable state of �

turns out to be x4.
Step 5: Considering the adjusted stable recursion function

sa of Table 2, we conclude that the true transition
corresponds to the pseudo character c2. Therefore,

θ+
1 = {c2}, θ−

1 = {c1}.

Step 6: (a) Since θ+
1 = {c2}, and {c2} is a member of

Sr
12(�

′, �), set Kd
12(�) = 1 and Sr

12(�
′, �) :=

∅. Then, (d) is valid, and model matching is
possible. The algorithm terminates.

Further, in this case, since Kd
12(�) = 1, it follows that

all states of the current sample of the machine � are
reachable from each other. Consequently, the state set
of this sample of � consists of a single connected set,
and all relevant matrices become scalars. Recalculating,
we obtain Kd(�) = 1 and Kd(�′, �) = 1, so that
Kd(�) ≥ Kd(�′, �). Thus, Theorem 7.13(ii) guaran-
tees the existence of a state feedback controller C that
operates in fundamental mode and satisfies �c = �′.
This controller can be built as described in [13, proof of
Theorem 5.1]. �

8. Conclusion

The paper presents a methodology for controlling indeter-
minate asynchronous machines. Control is performed by
an adaptive controller that automatically performs three
functions: (i) it tests critical indeterminate transitions of
the controlled machine; (ii) based on the results of test-
ing, it determines whether model matching to a specified
model is possible; and (iii) if model matching is possible, it

drives the controlled machine so as to match the specified
model.

The process of testing indeterminate transitions of the
controlled machine is performed during transients of the
closed loop machine �c; as transients of asynchronous
machines pass quickly (ideally, in zero time), the testing
process does not interfere with user experience. Once test-
ing is complete, the controller adjusts its function to the
test’s outcome, thus forming an adaptation process.

The discussion in this paper is restricted to adaptive state
feedback controllers. The design of adaptive output feed-
back controllers for asynchronous sequential machines
will be considered in a separate report.
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