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Abstract 

We show that a theory of control and stabilization can be developed for 
nonlinear systems, usm_g_ fraction representations and coprimeness as the basic 
mathematical notions. The theory bears striking resemblance to the transfer 
matrix theory of linear systems. 

1. INTRODUCTION AND BASICS 

The objective of our present paper is to review the 
fundamental aspects of a theory of stabilization of 
nonlinear systems recently developed by the author 
in HAMMER [ 1986a and b]. We shall provide here 
only a qualitative and brief exposition of the main 
results. and we shall omit all proofs. Of course, the 
complete discussion of our results and the proofs can 
be found in the references. 

Let r be a strictly causal nonlinear system 
which has to be stabilized. To stabilize I:. we connect 
it in the classical control configuration 

1l I 
{ t .1) 

C 

where n is a causal dynamic precompensator, and 
where <p is a causal dynamic feedback compensator. 
We denote by t(n,<p) the overall system described 
by the diagram. We wish to study the following 

( 1.2) PROBLEM. For a given system t, find all pairs 

of causal compensators n and <p for which r(n,<p) 
is internally stable. 

The basic tool that we use in our investigation of 
( 1.2) is the theory of fraction representations of 
nonlinear systems developed in HAMMER [ 1 986b and 
1985a], the basic aspects of which we review below. 
First, however. we describe in more precise terms 
the nature of the systems we wish to consider, and 
the meaning of stability. 

Our framework is presently built for the study of 
discrete-ti;ne systems. As usual, we denote by R 
the set of real numbers, and by Rm, where m > 0 
is an integer, the set of all m-tuples of real 
number5. By S0(Rm) we denote the set of all 
infinite sequences u = {u0, u1, u2, ... }. where Uj f 
Rm for all integers j 0, and where we interpret 
the index j as the time marker. Thus, S0 (Rm) is 
simply the set of all time-sequences of 
m-dimensional real vectors, starting at time zero. 
Given a sequence u f So{Rm) and an integer i 0, 
we denote by ui the i-th element of the sequence. 
In the space S0(Rm) we define the (standard) 
operation of addition elementwise, so that for every 
pair of sequences u, v f S0(Rffi), the sum sequence 
w := u + v has the elements wi = ui + vi for all 
integers i 0. 

A system r is simply a map r: S0 (Rm) S0(RP~. 
transforming input sequences of m-dimensional 
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vectors into output sequences of p-dimensional 
vectors. By composition of systems we simply mean 
the composition of the maps representing the 
systems. The addition of systems is defmed pointwise 
in the usual way, so that, given two systems r 1 • r2 : 
S0 (Rm) S0 (RP), their sum r == i:1 + i:2 : S0 (Rm) 
S0 (RP) transforms every input sequence u E S0 (Rm) 
into the output sequence ru == t 1 u + r2u E S0 (RP). 

From the practical point of view, the most 
interesting input sequences are, of course, the 
bounded ones. To treat bounded input sequences we 
denote, for every real e > 0, by [-e.e]m the set of 
all real vectors in Rm with entries in the interval 
(-e.e]. We denote by S0(em) the set of all sequences 
u E S0 (Rm) for which ui E [-e.e]m for all integers 

0. Thus, soeem) is the set of all input sequences 
'bounded' by e. 

We now turn to stability, and we first review 
several concepts related to boundedness and to 
continuity. Let r : S0(Rm) S0(RP) be a system. As 
usual. we denote by Im r the subset of S0(RP) 
consisting of all possible output sequences of E. Given 
a set Sc S0 (Rm), we denote by r[S] the set of all 
possfole output. sequences of the restriction of to 
S. We say that the system r is filOO 
(Bounded- lnput .fiou~ded-Qutput) -~ if, ·tor 
every real e > 0, there exists a real M > 0 such 
that r[S0 (em)J c S0 (MP). In other words, a 
ElBO-stable system transforms bounded input 
sequences into bounded output sequences. Next. in 
order to discuss continuity, we define a metric on our 
spaces of sequences. For a vector a = (a 1, ...• am) E 

Rm, we denote lal := max { la 11, ... ,lam!}. On the set 
S)Rm). we def me a norm p given, for every 
element u € s;(Rm), by p(u) == SUPi>o 2-i1uil· The 
norm p induces a metric p on soofm) when, for 
every pair of elements u, v E S0 (Rm), one sets 
p(u,v) == p(u-v). Unless explicitly stated otherwise, 
all references to continuity below refer to continuity 
with respect to the topology induced by the metric 
p. A system r : S0 (Rffi)-+ S0 (RP) is~ if it is 
BIBO-stable and if, for every real a > 0, its 
restriction t : saeem) -+ S0(RP) is a continuous map. 
This definition of stability is, of course, in the spirit of 
the Liapunov notion of stability. 

Much of our discussion in this work deals with 
composite systems. When talking about stability of 
composite systems. we have to distinguish between 
two concepts of stability - input/output stability 
and internal stability. We say that I:(n ,<p) is 
input/output stable if the input/output relation 

:e~resented by E('!l,<f>) .is .stable: We say that L(n.<p) 
1s mtenally stable 1f 1t 1s input/output stable, if all its 
internal signals are bounded, and if small additive 
noises activated at the points a, b, and c in diagram 
( 1. 1) cause only small changes in the output y of 
the composite system (see HAMMER ( 1986a] for an 
accurate definition). All composite systems that we 
consider in our discussion are internally stable. 

The basic underlying concept of our discussion is 
the concept of fraction representations of nonlinear 
systems. Given a nonlinear system r: S0(Rm) 
S0 (RP), we say that r has a right fraction 
representation if there is an integer q > O, a 
subspace SC S0(Rq), and a pair of stable maps P : S 

Im E and Q: S S0 (Rm), where Q is invertible, 
such that r = Pa-1 . The subspace S is called the 
factorization space of the fraction representation r = 
Pa-1 . We say that E has a left fraction 
representation if there is an integer q > 0, a 
subspace S' C S0 (Rq), and a pair of stable maps G : 
Im r S' and T: SoCRm)-+ S', where G is 
invertible, such that r = G-1 T. This definition of 
fraction representations i~ ren1iniscent of one of the 
most common procedures used in linear system 
theory - the expression of a transfer function F of a 
linear time-invariant system as a quotient of two 
polynomial matrices. One of the main themes of our 
discussion is that fraction repn-:sentations are of 
pivotal importance not only to the well known 
theory of linear systems, but to the theory of 
nonlinear systems as well. As we shall show later, 
most nonlinear systems of common practical interest 
do possess right and left fraction representations. 

Returning now to (I.I), assume that E : S0 (Rm) -+ 

S0 (RP) is a strjctly causal system, and that n : 
S0 (Rm)-+ S0(R.m) and cp : S0 (RP) -+ ~ 0 (Rffi) are 
causal systems. Then. the overall system described 
by the diagram can be express ed by the formula 
(e.g., HAMMER [1984b] ) 

(J.3) l'.(n.<p) = rn[I + cprnJ-1, 

where I : S0 (Rm) S0 (Rm) is the identity system. 
From our present point of view, the most interesting 
case occurs when the precompensator n and the 
feedback compensator <p are chosen in the 
particular form 

( 1.4) 
<p = A. 

TI= 5-I, 



where A : S0 (RP)-+ S0 (Rm) is a stable and causal 
system, and where B : S0(Rm)-+ S0(Rm) is a stable 
and invertible system having a causal inverse. 
Assume now that r has a right fraction 
representation r = pa-1 , where P : S-+ Im r and 
Q: S-+ S0 (Rm). and where Sc S0 (Rq). Then, 
substituting into ( 1.3), we obtain 

( 1.5) i:(n.<p) = pa-1 B-1 [I + APa-1 5- l J-1 
= P[BQ + APJ-1 , 

an equation that reminds us of the situation in the 
linear case. Clearly, if we can find stable systems A 
and B (subject to the aforementioned requirements) 
for which the stable and invertible system 

( 1.6) M == AP + BQ : S-+ S 

has a stable inverse M-1 . then, upon setting <p = A 
and n = B-1, the overall system r(n,<p) = PM-1 
becomes input/output stable. Moreover, as we discuss 
later, a slight strengthening of the stability 
requirements imposed on the systems A and B will 
actually guaranty that the system rcn.<p) is not 
just input/output stable, but internally stable as 
well. We arrive tnen at the following fundamental 

(1.7) QUESTION. Given a pair of stable maps P: S-+ 
S0 (RP) and Q: S-+ S0 (Rm), where SC S0 (Rq), when 
does there exist a pair of stable maps A : S0 (RP) -+ 
S0 (RQ) and B : S0 (Rm)-+ S0 (RQ) such that the 
stable map M == AP + BQ : S-+ S has a stable 
inverse M-1 . When such a pair exists, find pairs 
of stable maps A' : S0(RP)-+ S0(Rq) and B' : S0(RID) 
-+ S0(Rq) satisfying M = A'P + B'Q. 

For the case of linear systems, Question ( 1 . 7) has a 
well known answer in the theory of ma trices over 
Euclidian domains. As it turns out, a closely 
analogous theory can be constructed for the case of 
nonlinear systems as well, as we discuss below. 

2. COPRIMENESS AND FRACTION REPRESENT A TIO NS 

We wish to discuss first two basic assumptions 
that we make regarding the system r which is to 
be stabilized. Formally, our first assumption is that 
the system r which has to be stabilized is operated 
only by bounded input sequences, namely, that there 
is a fixed, but otherwise arbitrary. number oc > 0 

such that r : S0 (ocm)-+ S0 (RP). This assumption 
ne€ds little explanation, since most common practical 
systems have an inherent bound on the maximal 
allowable amplitude of the input signal, above which 
the mathematical model of the system is violated. 

Our second assumption is that the system r 
which needs to be stabilized is an injective system. 
This assumption requires explanation, since most 
common systems are, of course, not injective. 
However. we show in HAMMER [1986b] that, through 
a minor change in the control configuration ( I. 1 ). the 
problem of stabilizing any strictly causal system r 
can be transformed into the problem of stabilizing an 
injective system. Basically, this is done by stabilizing 
the system Ee:::: I+r. the sum of E and the identity 
system, instead of stabilizing the system E directly. 
Using causality considerations, it is easy to see 
intuitively that the system I+E is injective 
whenever the given system E is strictly causal. 
Though the expression l+E may formally be invalid 
due to possible discrepancies in the dimensions of the 
input and output spaces of r. this difficulty can be 
readily settled (HAMMER [ 1986b ]). Now, when one 
uses the configuration ( 1. 1) te stabilize the system 
Le, one also obtains stabilization of the system r in 
a slightly different control configuration. which 
qualitatively looks as the one in diagram (2. 1) below. 

Tt 
y 

(2.1) 

Thus, the restriction to injective systems simply 
amounts to replacing the configuration ( 1.1) by the 
configuration (2.1) when r is not injective. To 
summarize, we have seen that from the control 
theoretic point of view. we can limit ourselves to 
studying the stabilization of in jectiye systems E : 
S0 (ocffi)-+ S0 (RP), where oc > 0 is a fixed, but 
otherwise arbitrary, real number. 

Returning now to Question I. 7, we reproduce from 
HAMMER [ 1985a and 1986b], the definition of right 
coprimeness. Qualitatively, two stable maps P and 
Q are right coprime if. for every unbounded input 
sequence u, at least one of the output sequences Pu 
or Qu is unbounded. In the linear case, this would 
reduce to the requirement that P and Q have no 



unstable zeros in common. (Given a map P: S0(Rm) 
-+ S0 (RP) and a subset S C S0 (RP). we denote by 
P* [S] the inverse image of the set S through P, 
i.e., the set of all elements u E S0 (Rm) satisfying Pu 
ES.) 

(2.2) DEFINITION. Let S c S0 (Rq) be a subset. Two 
stable maps P : S-+ S0(RP) and Q: S-+ S0 (Rm) are 
right coprime if the following conditions hold: 
(i) For every real t' > 0 there exists a real e > 0 
such that P*[S0 (t'P)] () Q*(S0 (t'm)] c S0(eq). and 
(ii) For every real t' > 0, the set S () S0 (t'q) is a 
closed subset of S0 ( t'q). [] 

As we recall, our interest in ( l. 7) was motivated 
by ( l .5), so that the maps P and Q in our 
discussion originate from a fraction representation 
= pa-1 of the system r that has to be stabilized. In 
the next result, taken from HAMMER [1986b], we 
show that when P and Q are right coprime, the 
maps A and B of ( 1. 7) can be found. 

(2.3) THEOREM.~ E: S0 (ocm)-+ S0 (RP) 
injective system and assume it has a right fraction 
representation r = Pa- 1 . P : s -+ Im E .w.d 
Q: S-+ S0 (ocm). and where Sc S0 (Rq). ll P And Q 
are right coprime. then. for every stable map M : s 
-+ s. there is a pair of stable maps A : Im -+ S0 (Rq) 
and B : S0 (ocm)-+ S0 (Rq) satisfying AP + BQ = M. 

Theorem 2.3 opens the following new question. 

(2.4) QUESTION. When does an injective system E : 
S0 (ocm)-+ S0(RP) possess a representation E = pa-1 , 
where P and Q are stable and right coprime maps. 

As it turns out, not every injective system E : 
S0 (ocm) -+ S0 (RP) possesses a right coprime fraction 
representation. The only systems possessing such a 
representation are the so called 'homogeneous' 
systems (HAMMER [ 1985a and 1986b ]). which, 
qualitatively s~aking, satisfy the condition of being 
continuous over sets of inputs which produce 
bounded outputs. The exact definition is as follows. 

(2.5) DEFINITION. A system E : S0 (Rm)-+ S0 (RP) is a 
homogeneous system if for every real oc > O the 
following holds: for every subset S C S0(ocm) for 
which there exists a real e > 0 such that E(S] c 
S0 (0P), the restriction of E to the closure S of S in 
S0 (0<m) is a continuous map E: S-+ S0 (eP).[] 

The class of homogeneous systems is identical to 
the class of systems possessing right coprime fraction 
representations (HAMMER [ 1986b ]). 

(2.6) THEOREM. An injective system E : S0(ocm)-+ 
S0(RP) has a right coprime fraction representation if 
and only if it is a homogeneous system. 

In HAMMER [ 1985a] we showed that Theorem 2.6 
also holds for injective systems E : S0 (Rm) -+ S0 (RP). 
Fortunately, many systems of common engineering 
interest are homogeneous systems. We now provide 
an example of a rather large class of such systems. A 
system E : S0(Rm)-+ S0(RP) is recursive if there 
exists a pair of integers fl, µ L O and a function f : 
(RP)'Tl + 1 x(Rm)µ+ l -+ RP such that, for every input 
sequence u € S0(Rm), the output sequence y := Eu 
satisfies Yk+fl+l = f(yk, ···•Yk+fl ,uk, ... ,Uk+µ) for all 
integers k L 0. The initial conditions y 0 , ..• ,y'Tl must 
be specified and fixed. The function f is called a 
recursion function of E. It can be shown (HAMMER 
[ 1985b, 1986b]) that every recursive system having 
a continuous recursion function is a homogeneous 
system. Thus, our theory applies to most systems 
encountered in common engineering practice. 

The main objective of the theory of right 
coprimeness is to provide us with~ pair of stable 
systems A. B satisfying AP+ BQ = M, whenever P 
and Q are right coprime. The question of finding fill 
pairs of stable systems A. B satisfying the equation 
AP + BQ = M requires some further consideration. 
Crucial to the solution of this latter question is the 
theory of left fraction representations of nonlinear 
systems developed in HAMMER [1986b]. It is rather 
easy to see how left fraction representations enter 
into the discussion, as follows. 

Let E : S0(ocffi)-+ SoCRP) be a homogeneous 
system, let E = pa- l be a right coprime fraction 
representation of E, and assume that E also has a 
left fraction representation E = G-1 T. Then, we 
clearly have G-1 T =Pa-1, or TQ =GP. Assume 
further that one pair of stable systems A, B 
satisfying AP + BQ = M is known. To find additional 
pairs of stable systems A, B satisfying the same 
equation, we can proceed in a manner closely 
resembling linear methods. We choose an arbitrary 
stable system h, having appropriate input and 
output spaces, and we define the pair of stable 
systems 



A' = A - hG. 
(2.7) 

B' = B + hT. 

Then, since hTQ = hGP, we have A'P + B'Q = (A -
hG)P + (B + hT)Q = AP + BQ + (hTQ -hGP) = AP + BQ 
= M, and we obtained a new pair of stable systems 
A', B' satisfying A'P + B'Q = M. In fact, infinitely 
many pairs of stable systems A', B' satisfying A'P + 
B'Q = M can be obtained in this way, one pair for 
each choice of h. Moreover, using this simple 
method, one can actually obtain all solutions of the 
equation A'P + B'Q = M. Thus, we may conclude 
that left fraction representations are of fundamental 
significance to the stabilization problem of nonlinear 
systems. 

The theory of left fraction representations of 
homogeneous injective systems r : S0 (cxm) _. S0 (RP) 
is rather simple. due to the compactness of the 
domain S0 (cxm). We start our review of this theory 
with the following result (HAMMER [1986b]). 

(2.8) THEOREM. An injective homogeneous system r 
: S0 (cxm) -+ S0 (RP) has a left fraction representation, 

One of the most surprising facts in the theory of 
left fraction representations of injective homogeneous 
systems r : S0 (cxm) -t S0 (RP) is that every left 
fraction representation [ = G-1 T of such a system 
is actually a 'copnme' left fraction representation in 
an intuitive sense. and the numerator system T has 
a stable inverse. This fact is a major departure from 
the theory of linear systems, and it originates from 
the compactness of the domain SoCcxm). (The domain 
S0 (cxm) cannot be used in the linear case since it 
violates the linearity of the input space.) The 
following, combined with Theorem 2.3, provides a 
complete answer to Question 1. 7 (HAMMER [ 1986b ]). 

(2. 9) THEOREM. l.&i [ : S0 (cxm) -+ S0 (RP) bun 
injective homogeneous system, and let [ = pa- I 
a right coprime fraction representation. where P: s 
-+ Im L ruld Q: S S0 (cxm), and where SC S0 (Rq). 
Lil r = G-1 T left fraction representation of I:. 

G: Im E .... SL Mld T: S0 (ocm) -t SL. l&i M: S 
.... S be any stable map, and let A : Im r ... S0(Rq) 
.and B : S0(cxffi)-+ S0 (RG) be a pair of stable maps 
satisfying the eguatioo AP + BQ = M. Then a pair of 
stable maps A' : Im r-+ S0 (RG) B' : S0 (cxm)-+ 
So(Rq) satisfies A'P + B'Q = M if and only if there 
exists a stable map h : SL -+ S0 (Rq) such that A· = 
A - hG, ruid B' = B + hT. 

Finally, we remark that explicit constructions for 
fraction representations of nonlinear systems and for 
systems A and B satisfying AP+ BQ = M are 
given in HAMMER [ 1984a, 1985a, 1986a, and 1986b]. 

3. INTERNAL STABILIZATION 

We consider the internal stabilization of an 
injective and causal nonlinear system r : S0 (Rffi) ... 
So<RP) using the control configuration ( 1.1 ), with the 
particular form of the compensators n and <p of 
(1.4). so that rcn.<p) = L(B-1,A)- As before, we assume 
that the sta~ilized system L(n.<p) is operated only 
by bounded mputs, namely, that there is a real 
number 8 > 0 such that all input sequences u of 
E(n,q,) are taken from S0 (em). Before stating our 
results on internal stabilization, we have to introduce 
some terminology. Let S 1 c S0(R m) and S2 c 
S0 (RP) be two subsets, and let M : S 1 ... S2 be a 
map. We say that M is unimodular if M has an 
inverse M- 1 and if M and M- 1 are both stable 
maps; if M is unimodular, we say that the sets s1, 
S2 are S. (stability) -morphic. Also, for a pair of 
elements u, v € S0 (Rffi), we denote lu - vJ := supi>o 
{lui - vii}. Next, we need the following (HAMMER -
(1986a]) 

(3.1) DEFINITION. Let A : S0 (Rm)-. S0 (RP) be a 
stable map, and let e > 0 be a real number. We say 
that A is differentially bounded by e if there exists 
a real c > 0 such that, for every pair of elements 
Y, y' € S0(Rm) satisfying IY - y'I < c, one has jA(y) -
A(y')I < e. [] 

We note that, for a differentially bounded map, a 
bounded (by c) fluctuation of the input sequence 
causes only a bounded (by e) fluctuation of the 
output sequence. As an example of a class of 
differentially bounded maps, we have the class of 
maps which are uniformly J00 -continuous 
(HAMMER [ 1986a]). The next result, also taken from 
HAMMER [ 1986a], shows that the problem of 
internal stabilization of t, using the configuration 
( 1.1) with the compensators n and <p of ( 1.4), 
actually reduces to the problem of finding a pair of 
stable and differentially bounded systems A and B 
satisfying the equation AP + BQ = M. where M is a 
unimodular transformation. Thus, the problem of 
internal stabilization is reduced to studying the 
solutions A. B of the equation AP+ BQ = M, in close 



analogy to the situation in the linear case. The 
Theorem makes the assumption that the 
factorization space S of a right coprime fraction 
representation of r. contains a subspace s· which 
is S-morphic to SoC(5e)m). This assumption, which is 
a necessary condition for internal stabilization of the 
system E, was studied in detail in HAMMER 
[ l 986a]). As we mention later, most practical 
systems satisfy this assumption. 

(3.2) THEOREM. kt t : So(Rm)-+ So(RP) be a causal 
homogeneous system and let e > O be a real 
number. Let r = PQ- I be a right coprime fraction 
representation and let Sc S0 (Rq) l2e..lli. 
factorization space. Assume S contains a subset s· 
which is s-morphic to s0 ((5e)m), and let M : s· .... 
s0 ((Se)m) be a unimodular transformation, Assume 
there is a pair of stable maps A : S0 (RP)-+ S0 (RID) 
.arui. B : S0 (Rm) .... S0 (Rm) satisfying the equation 
APv + BQv = Mv for all elements v f. s·. A 

B are differentially bounded by e, A is causal 
and B is bicausal Then the composite system 
L(B-1.A) is internally stable for all input sequences u 
f So(eID). 

Before continuing with our discussion, we need 
some terminology. The first term is related to 
causality properties. Let r : S0(Rm)-+ S0 (RP) be an 
injective system, and denote by S the one-step 
time-delay operator. Also, let r-1 : Im r-+ S0(Rm) 
be the inverse system of r ( which exists by the 
injectiv1ty of r). We say that r is a normal 
system if there is an integer n such that ~ nr-1 
is a causal system. Most systems in nature are 
normal systems. For instance, recursive systems are 
normal. Next, we have the following 

(3.3) DEFINITION. Let r : S0 (Rm)-+ S0 (RP) be an 
injective homogeneous system. A subset S C S0 (R ffi) 
is a stability subspace of r if there is a pair of real 
numbers oc, > 0 such that S c S0 (ocffi) and I:[S] 
C S0 (~P). A stability subspace S c SaCocm) of L is 
iY.ll if there is a bicausal, stable, and uniformly 
100 -continuous map M : SoCRm)-+ S0(Rm) and a 
real number > 0 such that M[s] = S0 ( ~m), 
where S is the closure of S in S0(ocm). 0 

Again, most common practical systems do possess 
a full stability subspace, as we impart briefly below. 
A detailed discussion of full stability subspaces is 
provided in HAMMER ( 1986a]. We can now list a 

main result on intenal stabilization of nonlinear 
systems. 

(3.4) THEOREM. L.e1 r: S0 (Rm)-+ S0(RP) 
homogeneous, causal normal and injective system, 
having a full stability subspace. Then for any real 
number e > O, there is a pair of stable systems A : 
S0 (RP) -+ S0 (Rm) ruid B : S0 (Rm) -+ S0 (Rm), A 
is causal and B is bicausal such that the system 
I:(B-1,A) is internally stable for all input seg:uences u 
€ socem). 

We emphasize that our discussion in HAMMER 
[ 1986a] also contains constructions for the systems 
A and B of Theorem 3.4. We also show there that, 
generically, every causal recursive (injective) system 
r : S0(Rm)-+ S0(RP) having a twice continuously 
differentiable recursion function, satisfies the 
conditions of Theorem 3.4. Other systems may also 
satisfy these conditions. Thus, we may say that our 
theory applies to most systems of practical interest. 
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