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Abstract— Global state feedback controllers that asymptoti-

cally and robustly stabilize a nonlinear system are derived from

the solution of inequalities obtained directly from the controlled

system’s equation.

I. INTRODUCTION

We consider the design of state feedback controllers that

drive a nonlinear system S from given initial conditions

into a specified target domain in state space. It turns out

that such feedback controllers can be derived from the

solution of inequalities obtained directly from quantities

given in the differential equation of the controlled system

S. Furthermore, such feedback controllers exist if and only

if these inequalities have a solution. When the target domain

is a tight neighborhood of the origin, the technique yields

asymptotic stabilization.

The control configuration is described in the figure below,

where S is the controlled system, C is a state feedback

controller, and S
c

denotes the closed loop system.
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The control objective is as follows.

Problem 1: Let S be an input/state system with the set X

0

of potential initial conditions, and let D

0

be an open domain

in state space serving as the target domain. Find necessary

and sufficient conditions for the existence of a state feedback

controller C that takes S from every initial condition in X

0

into D

0

in finite time. If such a controller exists, provide a

method for its design. ⇤
State feedback controllers that solve Problem 1 are derived

in section III from the solution of a set of inequalities. The

inequalities are obtained directly from quantities given in the

differential equation of S. Furthermore, whenever solvable,

Problem 1 can be solved by static state feedback controllers –

controllers that are described by a feedback function rather

than by a differential equation. The controllers are robust:

they can tolerate small implementation errors as well as small

errors in the model of S. When the target domain D

0

is

a tight neighborhood of the origin, these controllers yield

asymptotic stabilization of S (section VI).

1

Department of Electrical and Computer Engineering, University of

Florida, Gainesville, FL 32611, USA hammer@mst.ufl.edu

Explicitly, the controlled system is described by

S :

ẋ(t) = f (x(t),u(t)), t � 0,
x(0) = x

0

,
(1)

where f : R

n ⇥R

m ! R

n

is a continuous function, x(t) 2 R

n

and u(t) 2 R

m

are the state and the input of S at the time t,

and x

0

is the initial state.

In section III we show that, if a solution of Problem

1 exists, then it can be chosen as a static state feedback

controller described by a state feedback function j : R

n !
R

m

. The input u(t) of S is then given by u(t) = j(x(t)), and

the closed loop system Sj is

Sj :

ẋ(t) = f (x(t),j(x(t))), t � 0,
x(0) = x

0

.
(2)

In sections II and III we show that an appropriate state

feedback function j can be calculated from the solution of a

set of inequalities derived directly from the function f given

in the differential equation (1) of the controlled system S.

Furthermore, Problem 1 has a solution if and only if this set

of inequalities has a solution.

We provide now a simplified (and somewhat inaccurate)

summary of the process that leads to the solution of Problem

1 in sections II and III. At a state x 2 R

n

, let U

1

(x) be the

set of all input values u 2 R

m

for which the vector f (x,u)
points from x to the target domain D

0

. Let D

1

be the set of

all states x 2 R

n

at which the set U

1

(x) is not empty. The

set D

1

is derived by solving an inequality induced by the

function f of (1).

At each point x 2 D

1

, choose a value u(x) 2 U

1

(x) and

define the state feedback function j(x) := u(x). Then, by (2),

the path derivative ẋ(t) = f (x(t),j(x(t))) of Sj is directed

toward D

0

at every point x(t) 2 D

1

. Consequently, the state

x(t) of Sj moves toward D

0

as time progresses.

Having built the set D

1

, consider the difference set D

0
2

:=
R

n \D

1

of the remaining states. At a state x 2 D

0
2

, denote by

U

2

(x) the set of all input values u 2 R

m

for which the vector

f (x,u) points from x to a point of the set D

1

. Let D

2

be

the set of all points x 2 D

0
2

at which U

2

(x) is not empty. As

before, at each point x 2D

2

, choose a value u(x)2U

2

(x) and

define the state feedback function j(x) := u(x). The set U

2

(x)
and the domain D

2

are calculated by solving an inequality

based on the function f given in (1). Then, the derivative

ẋ(t) = f (x(t),j(x(t))) points toward D

1

at all points x(t) of

D

2

, and the state trajectory x(t) takes Sj from every point

of D

2

toward D

1

. Once a point of D

1

is reached, the values

of the state feedback function j previously defined on D

1

take Sj to the target domain D

0

. The resulting state feedback
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function j takes Sj to the target domain D

0

from all points

of the union D

1

[D

2

.

Continuing in this way, we build a sequence of domains

D

1

,D
2

, ...✓R

n

: having derived the domains D

1

,D
2

, ...,D
i

for

an integer i � 1, consider the difference set

D

0
i+1

:= R

n \
 

[

j=0,...,i

D

j

!
.

At a state x 2 D

0
i+1

, let U

i+1

(x) be the set of all input values

u 2 R

m

for which the vector f (x,u) points from x to a point

of D

i

. Denote by D

i+1

the set of all points x 2 D

0
i+1

at which

U

i+1

(x) is not empty. The domain D

i+1

is obtained from the

solution of an inequality based on the given function f . At

each point x2D

i+1

, choose a value u(x)2U

i+1

(x) and define

the state feedback function j(x) := u(x). Then, by (2), the

path x(t) of Sj points toward D

i

at all points of D

i+1

; hence,

Sj moves from every point of D

i+1

toward D

i

. Once a point

of D

i

is reached, previously defined values of j on D

i

take

Sj into D

i�1

. From there, previously defined values of j
take Sj into D

i�2

, and so on, until Sj reaches the target

domain D

0

.

Schematically, the progression of Sj toward the target

domain D

0

can be described as in the figure below. Note

that D

i

may not be a connected set.

x1

x2

D1

D1

D2

D2

D0

The resulting state feedback function j takes S into D

0

in

finite time from any point of

S(D
0

) :=
[

i�0

D

i

.

In section III we show that this is an exclusive feature of

the set S(D
0

): there is no state feedback controller, not static

nor dynamic, that can take S into D

0

in finite time from a

state outside S(D
0

). Thus, a state feedback controller solving

Problem 1 exists if and only if

X

0

✓ S(D
0

).

When choosing the target domain D

0

as a tight neighbor-

hood of the origin, our discussion leads to state feedback

controllers that asymptotically stabilize S, as discussed in

section VI. This results in a simple approach to global

stabilization of nonlinear system by state feedback. The

critical step is the solution of a set of inequalities based on

the function f given in the differential equation (1) of S.

The fact that Problem 1 can be solved by a static state

feedback controller does not imply that dynamic state feed-

back controllers are insignificant, since they offer broader

capabilities of assigning the dynamical behavior of the closed

loop system S
c

. The static state feedback controllers derived

here can be utilized to obtain a fraction representation of

S; using such a fraction representation, one can derive

dynamical state feedback controllers that assign desirable

dynamics to the closed loop system ([5], [6], [7], [8]).

Alternative approaches to the control of nonlinear systems

can be found in [11], [12], [5], [6], [18], [3], [17], [7],

[2], [14], [16], [19], [15], [8], [1], [4], [13] and [9], in the

references cited in these publications, and elsewhere.

This note is organized as follows. Section II presents

basic concepts and notation. The derivation of state feedback

controllers that solve Problem 1 is discussed in Section

III. The issue of robustness is examined in Section IV,

and Section V demonstrates the proposed technique with a

detailed example. Robust asymptotic stabilization is studied

in section VI, and section VII consists of a few concluding

remarks.

II. PRELIMINARIES

A. Notation

In practice, systems usually have bounds on the maximal

input amplitude they can tolerate. To accommodate such

bounds, we adopt the following assumption, where |u| :=q
u

2

1

+u

2

2

+ · · ·+u

2

m

is the Euclidian norm of a vector u =

(u
1

,u
2

, ...,u
m

) 2 R

m

.

Assumption 1: The controlled system S permits only input

signals u of magnitude |u| M, where M > 0 is a specified

real number.

Under Assumption 1, the solution x(t) of (1) is a contin-

uous function of time.

We denote by B(s,r) the open ball of center s 2 R

n

and

radius r > 0, namely, B(s,r) := {x 2 R

n

: |x� s| < r} .
With a non-zero vector z 2 R

n

we associate a unit vector

ẑ in the direction of z

ẑ :=

⇢
z/|z| if z 6= 0,
0 if z = 0,

where ẑ = 0 when z = 0. Then, ·̂ is a continuous function at

nonzero arguments.

The straight line segment that connects two distinct points

y,z 2 R

n

is

`(y,z) := {a(z� y)+ y : a 2 [0,1]}. (3)

We build the following n-dimensional body.

Definition 1: Given two points z,s2 R

n

and a real number

r > 0, the ball-cone c(z,s,r) consists of all straight line

segments that start in the open ball B(s,r) and end at z:

c(z,s,r) :=
[

y2B(s,r)

`(y,z)

= {x 2 R

n

: x = a(z� y)+ y,a 2 [0,1],y 2 B(s,r)} .



Here, z is the apex of c(z,s,r) and s is the base center. ⇤
A ball-cone, pictured in the figure below, is akin to a cone,

except that it has a ball instead of a cone’s ‘flat’ base. The

shaded area in the figure is a right circular cone c(z,s,r) with

vertex z, base center s, and radius r . The angle q between

the generator and the axis of c(z,s,r) is called the opening

angle of the ball-cone c(z,s,r). It satisfies

r = |s� z| tanq . (4)

s
z

r

B(s,r)

qc(z
,s,

r)

A ball-cone c(z,s,r)

B. Directional Error

Suppose it is necessary to take the system S of (1) from a

state z to a state s 6= z along the straight line segment `(z,s)
of (3). For this to happen, the derivative ẋ = f (x,u) must

point in the direction from z to s at all points x 2 `(z,s). In

other words, at every state x 2 `(z,s), there must be an input

value u(x) for which f (x,u(x)) points in the direction of the

unit vector

\(s� z). As every point x of `(z,s) is characterized

by the triplet z,s,a of (3), we can write u(z,s,a) instead of

u(x). Then, S can be driven along `(z,s) if and only if there

are inputs u(z,s,a) 2 R

m

such that

ˆ

f (a(z� s)+ s,u(z,s,a)) = \(s� z) for all a 2 [0,1]. (5)

To be robustly implementable, (5) must be modified into

a form that allows for small errors. To this end, let e >
0 be a real number. Allowing a directional error of e , we

replace (5) by the requirement that there be an input function

u(z,s,a) 2 R

m

satisfying

��� ˆ

f (a(z� s)+ s,u(z,s,a))� \(s� z)
���< e (6)

for all a 2 [0,1]. The expression ”an error of e” refers to all

errors of magnitude not exceeding e .

Clearly, (6) must be valid at all states through which

S might pass on its way. Due to the directional error,

the motion of S may not be confined to the straight line

segment `(z,s). To determine the states through which

S may pass, let q(e) � 0 be the supremal angle be-

tween the two unit vectors

ˆ

f (a(z� s)+ s,u(z,s,a)) and

\(s� z) consistent with a directional error of e , namely, the

angle between

ˆ

f (a(z� s)+ s,u(z,s,a)) and

\(s� z) when��� ˆ

f (a(z� s)+ s,u(z,s,a))� \(s� z)
���= e.

Now, a ball-cone G(z,s,e) with opening angle q(e) and

base center s has, by (4), the base radius

r(z,s,e) = |z� s| tanq(e). (7)

It is given by

G(z,s,e) =
[

y2B(s,r(z,s,e))

`(z,y)

= {x 2 R

n

: x = a(z� y)+ y,a 2 [0,1],y 2 B(s,r(z,s,e))} ,

We show below that condition (6) must be valid within

the entire ball-cone G(z,s,e) in order to be meaningful.

C. Ball-cones

In this subsection, we lay the foundation for proving the

following fact: with a directional error of e , a system that

starts at a state z and moves toward s, stays within the closure

G(z,s,e) of the ball-cone G(z,s,e) until reaching the vicinity

of s.

Proposition 1: Let z,s 2 R

n

be two distinct points, and let

e > 0 be a directional error for which the opening angle of the

ball-cone G(z,s,e) satisfies q(e) < p/4. Then, G(z0,s,e) ✓
G(z,s,e) for all z

0 2 G(z,s,e).
Proof: (sketch) A point z

0 2 G(z,s,e) is of the form z

0 =
b (z� y)+ y for some b 2 [0,1] and y 2 B(s,r(z,s,e)). The

ball-cone with vertex at z

0
has the base radius r(z0,s,e) =

|z0 � s| tanq(e) according to (7), and is given by

G(z0,s,e) :=

⇢
x 2 R

n

����
x = a(z0 � y

0)+ y

0,
a 2 [0.1],y0 2 B(s,r(z0,s,e))

�

=

8
<

:x 2 R

n

������

x = a(b (z� y)+ y� y

0)+ y

0,
a,b 2 [0.1],y 2 B(r(z,s,e),
y

0 2 B(r(z0,s,e)

9
=

; . (8)

We need to show that the point

x = a(b (z� y)+ y� y

0)+ y

0
(9)

of (8) is in G(z,s,e) for all a,b 2 [0,1]. To this end, rewrite

(9) as

x = ab (z�h)+h , (10)

where

h = y� 1�a
1�ab

(y�y

0) for all a,b 2 [0,1] satisfying ab 6= 1.

Denoting g(a,b ) := 1�a
1�ab , an examination shows that

g(a,b ) 2 [0,1] for all a,b 2 [0,1],ab 6= 1. Therefore, h
is a point on the straight line segment connecting y and y

0
.

As q(e) < p/4 by the proposition’s assumption, r(z0,s,e) <
r(z,s,e). Noting that the closed balls B(s,r(z,s,e)) and

B(s,r(z0,s,e)) are concentric with center at s, that y 2
B(s,r(z,s,e)), and that y

0 2 B(s,r(z0,s,e)), it follows by

convexity that the straight line segment connecting y and

y

0
is in B(s,r(z,s,e)); hence, so is h . By (10), this implies

that x 2 G(z,s,e).
Considering that directional errors are usually small and that

Proposition 1 is important to our discussion, we impose the

following.

Assumption 2: The directional error satisfies q(e) < p/4.

Notation 1: For a real number b > 0, the symbol 0(b )
represents the set of all functions w : R

n ! R

n

for which

limb!0

|w(b )|/b = 0. ⇤



The next statement is a technical refinement of Proposition

1 proved in [10]. It will help us show that, upon moving from

z to s with a directional error of e , the system stays within

the ball-cone G(z,s,e) until reaching a vicinity of s.

Lemma 1: Let x,x0,s,z 2 R

n

be points for which x

0 � x =
b ba + µ(x0,x), where b > 0 is a real number, ba is a unit

vector satisfying |ba� \(s� x)|< e , and µ(x0,x) 2 0(b ). If x 2
G(z,s,e), then also x

0 2 G(z,s,e) for sufficiently small b > 0.

⇤
D. Interception

Let D(s,e) be the set of all states at which the trajectory

of S can be pointed in the direction of a state s 2 R

n

with a

directional error of e . Incorporating Assumption 1, we have

D(s,e) =

8
<

:x 2 R

n \ s

������

| ˆ

f (x,u(x))� \(s� x)| < e
for some u(x) 2 R

m

satisfying |u(x)| M

9
=

; . (11)

Problem 1 requires a feedback controller to take S from an

initial state x

0

= z into a target domain D

0

. The path of

S from z to D

0

is unpredictable due to directional errors,

but Proposition 2 below shows that the closed loop system

remains within the closed ball-cone G(z,s,e). Therefore, if

every path through G(z,s,e) meets the target domain D

0

,

then D

0

will be reached, regardless of uncertainties. This

motivates the following notion.

Definition 2: An open domain D

0

✓R

n

intercepts the ball-

cone G(z,s,e) if `(z,y)\D

0

6= ? for all y 2 B(s,r(z,s,e)).
⇤

D0

z

s

`(
z,

y)

y

G(z,s,e)

G D
0
(z

,s
,e

)

Interception means that every ray from the apex z within

G(z,s,e) meets D

0

, as depicted above. Note that we are

interested in the “upper” part of the ball-cone – the part

between the apex z and the set D

0

; after that, D

0

is reached.

Definition 3: Let D

0

be an open subset of R

n

that inter-

cepts the ball-cone G(z,s,e), and denote by

ˇ

D

0

:= D

0

\D

0

the boundary of D

0

. The the restriction G
D

0

(z,s,e) is the set

G
D

0

(z,s,e) :=

8
><

>:

S
`(y,z)

�����
y 2 G(z,s,e)\ ˇ

D

0

and `(y,z)\D

0

= ?
if z /2 D

0

,

? if z 2 D

0

.

When z /2 D

0

, the restriction G
D

0

(z,s,e) consists of all points

of G(z,s,e) that are between the apex z and the target domain

D

0

, including z and the ’upper’ boundary of D

0

. Being a

subset of G(z,s,e), it is a bounded set. A closer examination

shows that it is also a closed set (see [10] for details), and

the following is true.

Lemma 2: Let D

0

✓ R

n

be an open set that intercepts

the ball-cone G(z,s,e). Then, the restriction G
D

0

(z,s,e) is

a compact set. ⇤
III. STATE FEEDBACK FUNCTIONS

A. State Feedback and Target Domains

The states from which the controlled system can be driven

into the target domain along a path resembling a straight line

are characterized as follows.

Proposition 2: Let S be a system described by (1), where

the function f is continuous. Let z,s 2 R

n

be a pair of points,

let e > 0 be a real number, let D(s,e) be given by (11), and

let D

0

✓ R

n

be an open domain that intercepts G(z,s,e). If

G
D

0

(z,s,e) ✓ D(s,e), then there is a state feedback function

j with directional error of e that takes S from z into D

0

in

finite time.

Proof: (sketch) Let x(t) be the state of S at time t,

and let x(0) := z be the initial state. As x(0) 2 G
D

0

(z,s,e) ✓
D(s,e) by assumption, there is an input value u(x(0)) 2 R

m

for which | ˆ

f (x(0),u(x(0)))� \(s� x(0))| < e. Now, let t �
0 be a real number for which the following is true for all

t 2 [0,t]: x(t) 2 G
D

0

(z,s,e), and there is a state feedback

function u(x(t)) that drives S with a directional error of e
toward s. Define

T := supt. (12)

By (1), we can write for a real number d > 0 that

x(t +d ) = x(t)+ f (x(t),u(x(t)))d +0(d ). (13)

By (12), there are times t

1

, t
2

, ...2 [0,T ] converging to T such

that x(t
i

) 2 G
D

0

(z,s,e) for all i = 1,2, ... As G
D

0

(z,s,e) is

compact by Lemma 2, the sequence {x(t
i

)}•
i=1

has a conver-

gent subsequence {x(t
i

k

)}•
k=1

and lim

k!• x(t
i

k

)2 G
D

0

(z,s,e).
As x(t) is the solution of (1) with bounded input (Assumption

1), x(t) is a continuous function of time; hence, lim

k!• t

i

k

=
T implies lim

k!• x(t
i

k

) = x(T ), so that x(T ) 2 G
D

0

(z,s,e).
Since G

D

0

(z,s,e) ✓ D(s,e) by assumption, x(T ) 2 D(s,e).
Thus, there is an input value u(x(T )) 2 R

m

at which

| ˆ

f (x(T ),u(T ))� \(s� x(T ))| < e . Using (13) with t = T and

Lemma 1, it follows there is a real number d
1

> 0 such that

x(T + d ) 2 G
D

0

(z,s,e) for all 0 < d < d
1

, contradicting the

supremality of T . Thus, x(T +d ) 2 D

0

.

B. Expansion Sets

By Proposition 2, the system S can be driven into the target

domain D

0

by a state feedback function with directional error

of e from any point of the set

E

1

f

(D
0

,e) :=

⇢
z 2 R

n

����
D

0

intercepts G(z,s,e) for some

s 2 R

n

and G
D

0

(z,s,e) ✓ D(s,e).

�



Definition 4: E

1

f

(D
0

,e) is the expansion set of D

0

relative

to f with directional error of e . ⇤
By Definitions 2 and 3,

D

0

✓ E

1

f

(D
0

,e). (14)

Proposition 2 can now be restated as follows.

Proposition 3: Let S be a system described by (1) with

a continuous function f . Let e > 0 be a real number, let

D

0

✓ R

n

be an open domain, and let E

1

f

(D
0

,e) be the

expansion set. Then, there is a state feedback function j
with directional error of e that takes S from every initial

state z 2 E

1

f

(D
0

,e) into D

0

in finite time. ⇤
The fact that the target domain is an open set together with

the continuity of the function f of (1) implies the following

(see [10] for detailed proof).

Lemma 3: Let S be a system described by (1) with a

continuous function f , and let D

0

be an open domain in R

n

.

Then, the expansion set E

1

f

(D
0

,e) is an open set for every

e > 0. ⇤

C. More Expansion Sets

Based on Definition 4, we build a sequence of sets

E

0

f

(D
0

,e),E1

f

(D
0

,e),E2

f

(D
0

,e), ..., where, for i = 0,1,2, ...,

E

i+1

f

(D
0

,e) := E

1

f

(Ei

f

(D
0

,e),e),E0

f

(D
0

,e) := D

0

.

By (14), we have E

i

f

(D
0

) ✓ E

i+1

f

(D
0

), i = 0,1,2, ... In these

terms, Proposition 3 becomes

Proposition 4: Let e > 0 be a real number, and let D

0

be an open domain in R

n

. There is a static state feedback

controller with directional error of e that drives S from every

state z 2 E

i+1

f

(D
0

,e) into E

i

f

(D
0

,e), i = 0,1, ... ⇤
Similarly, Lemma 3 yields

Lemma 4: Let S be a system described by the differential

equation (1) with a continuous function f , and let D

0

be an

open domain in R

n

. Then, the expansion set E

i

f

(D
0

,e) is an

open set for all e > 0 and all i = 1,2, ... ⇤
We have arrived at the main notion of our discussion.

Definition 5: Let D

0

be an open domain in R

n

, let f :

R

n ⇥R

m ! R

n

be a continuous function, and let e > 0 be a

real number. The expansion E

f

(D
0

,e) of D

0

with respect to

f and e is E

f

(D
0

,e) := [
i�0

E

i

f

(D
0

,e). ⇤
The following is a main result.

Theorem 1: Let S be a system described by the differen-

tial equation (1) with a continuous function f , and let D

0

be

an open domain in R

n

. Then, (i) and (ii) are equivalent.

(i) There is a state feedback function with directional error

of e that drives S from a state z 2 R

n

into D

0

in finite time.

(ii) z 2 E

f

(D
0

,e).
Furthermore,

(iii) For a state z /2 E

f

(D
0

,e), there is no state feedback

controller – not static nor dynamic – that drives S from z

into D

0

in finite time with a directional error of e .

Proof: (sketch) Consider a point z 2 E

f

(D
0

,e). By

(5), there is a first integer i such that z 2 E

i

f

(D
0

,e). By

Proposition 4, there then is a state feedback function j
with a directional error of e that drives S from z to a point

z

1

2 E

i�1

f

(D
0

,e) in finite time. Similarly, the state feedback

function j can be extended to take S from z

1

to a point

z

2

2 E

i�2

f

(D
0

,e) in finite time, and so on, until S reaches a

point z

i

2 D

0

, and it follows that (ii) implies (i). For proofs

that (i) implies (ii) and that (iii) is valid, see [10].

In [10] it is shown that the feedback function of Theorem 1

can be selected to be piecewise continuous.

Theorem 1 provides a simple and effective method for

calculating state feedback functions that drive a given system

S into a target domain with a directional error of e: at each

state x of E

i

f

(D
0

,e), choose a state feedback function j for

which the vector f (x,j(x)) points to a point of E

i�1

f

(D
0

,e).
Such a value of j is obtained by solving an inequality based

on the function f – the function given in the differential

equation of the controlled system S. An example is provided

in Section V.

IV. ROBUST CONTROL

A robust implementation of a state feedback controller is

an implementation with an unspecified nonzero directional

error. Robust implementation depend on the next notion.

Definition 6: Let f : R

n ⇥R

m ! R

n

be a continuous func-

tion, and let D

0

be an open domain in R

n

. The super exten-

sion set of D

0

with respect to f is E

f

(D
0

) :=[e>0

E

f

(D
0

,e).
⇤

A slight reflection yields the following consequence of

Theorem 1 (see [10] for details).

Theorem 2: Let S be a system described by the differen-

tial equation (1) with a continuous function f . Let D

0

be an

open domain in R

n

, and let E

f

(D
0

) be the super expansion

set. Then, (i) and (ii) are equivalent.

(i) There is a robust implementation of a static state feedback

controller that drives S from a state z 2 R

n

into D

0

in finite

time.

(ii) z 2 E

f

(D
0

).
Furthermore,

(iii) For a state z /2E

f

(D
0

), there is no robust implementation

of a state feedback controller – not a static nor a dynamic

controller – that takes S from z into D

0

in finite time. ⇤

V. EXAMPLE

Example 1: Consider the system

S :

ẋ = x

2 � y

2

ẏ = u

= f (x,y,u),

with the target domain D

0

= B(0,0.1). For the sake of

simplicity, we ignore here the input magnitude bound M;

it can be readily incorporated. Note that when x

2 > y

2

,

we have ẋ > 0, so the state moves generally to the right;

when x

2 < y

2

, we have ẋ < 0, and the state moves generally

toward the left, as indicated by the arrows in the figure

below. As ẏ = u, the vertical ’tilt’ of the state’s trajectory

can be assigned by selecting u. Thus, f can be pointed

toward the origin by selecting an appropriate u only in

the domains marked A in the figure, so that E

1

f

(D
0

) =�
(x,y) : y

2 > x

2

and x > 0; or y

2 < x

2

and x < 0

 
.



x

y

y2 > x2

y2 > x2

A

A

A
A

B

B

B

B

y2 > x2

y2 > x2

y2 < x2

y2 < x2

y2 < x2y2 < x2

A slight reflection shows that, in the remaining parts of

the plane, f can be pointed toward E

1

f

(D
0

) from every point

by selecting an appropriate u, so that E

2

f

(D
0

) = R

2 \E

1

f

(D
0

).
The domains that form E

2

f

(D
0

) are marked B in the figure

above. According to Theorem 2, there is a state feedback

function j that takes S to a close vicinity of the origin from

every bounded domain in state space.

To obtain a state feedback function j , define the domains

A

0
:=

⇢
(x,y)

����
x

2 � y

2 < 0,x > 0, |y/x| < 100; or

x

2 � y

2 > 0,x < 0, |y/x| < 100;

�

and B

0
:= R

2 \A

0
. Then, an examination shows that the fol-

lowing feedback function assigns directions to f (x,y,j(x,y))
that point to the origin from within A

0
, and point to A

0
from

within B

0
:

j(x,y) :=

8
>>>><

>>>>:

(x2 � y

2)y/x if (x,y) 2 A

0
;

(5(x2 � y

2)+1) if (x,y) /2 A

0
and y � 0,x > 0;

(5(x2 � y

2)�1) if (x,y) /2 A

0
and y > 0,x < 0;

(5(y2 � x

2)�1) if (x,y) /2 A

0
and y  0,x > 0;

(5(y2 � x

2)+1) if (x,y) /2 A

0
and y < 0,x < 0.

VI. ASYMPTOTIC STABILIZATION

In this section, we seek a state feedback function j for

which the state of Sj approaches the origin asymptotically

as t ! •. We assume that S has a stationary point at the

origin, i.e., that f (0,0) = 0. To find such a state feedback

function j , we proceed in two steps:

(i) Use the technique of Theorem 2 to find a state feedback

function j
1

that brings S from the initial state into a close

vicinity V = B(0,r) of the origin, where r > 0 is ’small’.

(ii) Use the linear approximation of S at the origin

ẋ(t) =
∂ f (0,0)

∂x

x(t)+
∂ f (0,0)

∂u

u(t) (15)

to derive a linear state feedback function j
2

that takes S
asymptotically to the origin from within V .

Patching j
1

and j
2

together into one function j yields a

state feedback function that drives S asymptotically from an

initial state x

0

to the origin, yielding asymptotic stabilization.

This leads to the following statement.

Theorem 3: Let S be a system described by the differen-

tial equation (1), where the function f is twice continuously

differentiable and f (0,0) = 0. Assume that the linear approx-

imation (15) of S at the origin forms a stabilizable linear

system, and let X

0

✓ R

n

be the set of all potential initial

states of S. Then, there is a real number r⇤ > 0 for which

the following two statements are equivalent.

(i) S is robustly and asymptotically stabilizable over the

domain X

0

of initial states.

(ii) X

0

✓ E

f

(B(0,r⇤)). ⇤
A computation of r⇤

is provided in [10].

VII. CONCLUSION

A general framework was developed for the design of

nonlinear state feedback controllers. The main step of this

framework involves the solution of a set of inequalities

based on the function f given in the differential equation

(1) of the controlled system S. As the example of section

V demonstrates, the calculation of stabilizing state feedback

controllers is relatively simple in this framework.
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